from NumPy import *

函数形式: tile(A,rep)

功能:重复A的各个维度

参数类型:

- A: Array类的都可以

- rep:A沿着各个维度重复的次数

这个英文单词的本意是:贴瓷砖,还挺形象的。

举例:

tile([17,29],2),如果rep参数是一个整数,则表示重复A中的元素rep次,即行数(即维度)只有1维,所以2的意思是在“列”这个维度上重复2次

输出[17,29,17,29]

tile([29,17],(3,5))

此时的(3,5)和[3,5]是相同的效果。

结果是3组,每组重复5次,也可以理解为二维表,3行,5列。先分3组(重复3次),每组重复5次。

array([[29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17]])

tile([29,17],[3,5,7])

结果是3组,每组一个二维表,每个二维表5行,7列,可以理解为三维表

array([[[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17]]])

tile([29,17],[3,5,7,4])

结果是4组,怎样理解?我也不知道,这已经超过了人类空间的认知。

依次分组,先分3组重复,然后分5组重复,然后分7组,最后重复4次。

如果5维会怎样?也是继续按组重复下去。先分5组,用中括号分隔。

array([[[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]]],

[[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]]],

[[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]]]])

Python模块NumPy中的tile(A,rep) 函数的更多相关文章

  1. Python:numpy中的tile函数

    在学习机器学习实教程时,实现KNN算法的代码中用到了numpy的tile函数,因此对该函数进行了一番学习: tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复 ...

  2. Mathab和Python的numpy中的数组维度

    Matlab和Python的numpy在维度索引方面的不同点: 1.索引的起始点不同:Matlab起始位置的索引为1,Python为0. 2.索引的括号不同:Matlab中元素可以通过小括号表示索引, ...

  3. python和numpy中sum()函数的异同

    转载:https://blog.csdn.net/amuchena/article/details/89060798和https://www.runoob.com/python/python-func ...

  4. numpy中的tile函数

    tile()函数可以很方便的生成多维数组.它有两个参数,第一个数是原始数组;第二个表示如何来生成,第一个数字表示生成几行,第二个表示每行有多少个原始数组(如果只写一个数字,那么就默认是一行). fro ...

  5. python模块collections中namedtuple()的理解

    Python中存储系列数据,比较常见的数据类型有list,除此之外,还有tuple数据类型.相比与list,tuple中的元素不可修改,在映射中可以当键使用.tuple元组的item只能通过index ...

  6. python模块win32com中的early-bind与lazy-bind(以Autocad为例)

    1.什么是Lazy-bind模式,Early-bind模式? win32com中,Lazy-bind 模式指的是程序事先不知道对象的任何方法和属性,当对象属性,方法被调用时,程序才向对象发出一个询问( ...

  7. Python模块包中__init__.py文件的作用

    转载自:http://hi.baidu.com/tjuer/item/ba37ac4ce7482a0f6dc2f08b 模块包: 包通常总是一个目录,目录下为首的一个文件便是 __init__.py. ...

  8. python类库numpy中常见函数的用法

    1. numpy.reshape  重塑 reshape是一种函数,函数可以重新调整矩阵的行数.列数.维数. B = reshape(A,m,n) 返回一个m*n的矩阵B, B中元素是按列从A中得到的 ...

  9. 【python】Numpy中stack(),hstack(),vstack()函数详解

    转自 https://blog.csdn.net/csdn15698845876/article/details/73380803 这三个函数有些相似性,都是堆叠数组,里面最难理解的应该就是stack ...

随机推荐

  1. MTK 锁屏配置

    常常我们开 发程序的时候我们不需要系统唤醒系统锁屏功能,用户有时候在看电视或视频的时候不希望系统的锁屏 功能启动,既不想锁频,然而系统却在我们看电视或者视频的时候出来个锁屏的界面进行锁频拉,我们还要想 ...

  2. Asp.net动态生成表单

    control.ascx <%@ Control Language="C#" AutoEventWireup="true" CodeBehind=&quo ...

  3. 联想一体机u盘启动设置

    开机启动按f12键,进入后,到最后一项exit把OS Optimized Defaults(操作系统优化的缺省值)改成Disabled(关闭). 再进入到Startup这一项,选择UEFI/Legac ...

  4. PHP代码执行函数总结

    PHP中可以执行代码的函数,常用于编写一句话木马,可能导致代码执行漏洞,这里对代码执行函数做一些归纳. 常见代码执行函数,如 eval().assert().preg_replace().create ...

  5. win10找回Windows照片查看器

  6. 在apache虚拟目录配置

    在apache虚拟目录配置中 <VirtualHost *:80>xxx xxx xxx</VirtualHost> 不能写成 <VirtualHost *>xxx ...

  7. 【转载】如何从win8/8.1中文版(核心版)升级到win8/8.1专业版

    最近帮助很多同学从win8/8.1的基础版本 - 中文版(核心版)升级到了专业版,经过咨询,升级系统的最主要原因是中文版(核心版)的功能限制,因为基础版本阉割掉了很多常用的功能,比如组策略,计算机管理 ...

  8. URL域名获取

    http://"是协议名 "www.test.com"是域名 "是端口号 "aaa"是站点名 "bbb.aspx"是页面 ...

  9. PON系统基础知识简介

    一  PON基础知识 1.1 PON技术概念 PON(Passive Optical Network)即无源光网络,一种基于点到多点(P2MP)拓朴的技术.“无源”指ODN(光分配网络)不含有任何电子 ...

  10. 【python3】基于 qq邮箱的邮件发送

    脚本内容: #!/usr/bin/python3 # -*- coding: UTF-8 -*- import smtplib from email.mime.text import MIMEText ...