from NumPy import *

函数形式: tile(A,rep)

功能:重复A的各个维度

参数类型:

- A: Array类的都可以

- rep:A沿着各个维度重复的次数

这个英文单词的本意是:贴瓷砖,还挺形象的。

举例:

tile([17,29],2),如果rep参数是一个整数,则表示重复A中的元素rep次,即行数(即维度)只有1维,所以2的意思是在“列”这个维度上重复2次

输出[17,29,17,29]

tile([29,17],(3,5))

此时的(3,5)和[3,5]是相同的效果。

结果是3组,每组重复5次,也可以理解为二维表,3行,5列。先分3组(重复3次),每组重复5次。

array([[29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17]])

tile([29,17],[3,5,7])

结果是3组,每组一个二维表,每个二维表5行,7列,可以理解为三维表

array([[[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17]]])

tile([29,17],[3,5,7,4])

结果是4组,怎样理解?我也不知道,这已经超过了人类空间的认知。

依次分组,先分3组重复,然后分5组重复,然后分7组,最后重复4次。

如果5维会怎样?也是继续按组重复下去。先分5组,用中括号分隔。

array([[[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]]],

[[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]]],

[[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]]]])

Python模块NumPy中的tile(A,rep) 函数的更多相关文章

  1. Python:numpy中的tile函数

    在学习机器学习实教程时,实现KNN算法的代码中用到了numpy的tile函数,因此对该函数进行了一番学习: tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复 ...

  2. Mathab和Python的numpy中的数组维度

    Matlab和Python的numpy在维度索引方面的不同点: 1.索引的起始点不同:Matlab起始位置的索引为1,Python为0. 2.索引的括号不同:Matlab中元素可以通过小括号表示索引, ...

  3. python和numpy中sum()函数的异同

    转载:https://blog.csdn.net/amuchena/article/details/89060798和https://www.runoob.com/python/python-func ...

  4. numpy中的tile函数

    tile()函数可以很方便的生成多维数组.它有两个参数,第一个数是原始数组;第二个表示如何来生成,第一个数字表示生成几行,第二个表示每行有多少个原始数组(如果只写一个数字,那么就默认是一行). fro ...

  5. python模块collections中namedtuple()的理解

    Python中存储系列数据,比较常见的数据类型有list,除此之外,还有tuple数据类型.相比与list,tuple中的元素不可修改,在映射中可以当键使用.tuple元组的item只能通过index ...

  6. python模块win32com中的early-bind与lazy-bind(以Autocad为例)

    1.什么是Lazy-bind模式,Early-bind模式? win32com中,Lazy-bind 模式指的是程序事先不知道对象的任何方法和属性,当对象属性,方法被调用时,程序才向对象发出一个询问( ...

  7. Python模块包中__init__.py文件的作用

    转载自:http://hi.baidu.com/tjuer/item/ba37ac4ce7482a0f6dc2f08b 模块包: 包通常总是一个目录,目录下为首的一个文件便是 __init__.py. ...

  8. python类库numpy中常见函数的用法

    1. numpy.reshape  重塑 reshape是一种函数,函数可以重新调整矩阵的行数.列数.维数. B = reshape(A,m,n) 返回一个m*n的矩阵B, B中元素是按列从A中得到的 ...

  9. 【python】Numpy中stack(),hstack(),vstack()函数详解

    转自 https://blog.csdn.net/csdn15698845876/article/details/73380803 这三个函数有些相似性,都是堆叠数组,里面最难理解的应该就是stack ...

随机推荐

  1. Linux Top命令详解(载自百度经验)

    Linux系统可以通过top命令查看系统的CPU.内存.运行时间.交换分区.执行的线程等信息.通过top命令可以有效的发现系统的缺陷出在哪里.是内存不够.CPU处理能力不够.IO读写过高. 1 使用S ...

  2. MySQL--指定浮点型数据的精确度TRUNCATE

    INSERT INTO perf_week(node_id,perf_time,pm25,pm10,temp,humi) ) ) ) ) AS humi FROM perf_pm25 WEEK) AN ...

  3. c# new的三种用法

    在 C# 中,new 关键字可用作运算符.修饰符或约束. 1)new 运算符:用于创建对象和调用构造函数.这种大家都比较熟悉,没什么好说的了. 2)new 修饰符:在用作修饰符时,new 关键字可以显 ...

  4. Python 统计代码量

    #统计代码量,显示离10W行代码还有多远 #递归搜索各个文件夹 #显示各个类型的源文件和源代码数量 #显示总行数与百分比 import os import easygui as g #查找文件 def ...

  5. socket 中文man页面函数

    Linux 套接字的用户接口. 这个 BSD 兼容套接字是介于用户进程与内核网络协议栈之间的统一接口, 各协议模块属于不同的 协议族 ,如 PF_INET, PF_IPX, PF_PACKET 和 套 ...

  6. c语言中的内存分配malloc、alloca、calloc、malloc、free、realloc、sbr

    C语言跟内存分配方式 (1) 从静态存储区域分配.内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在.例如全局变量,static变量. (2) 在栈上创建.在执行函数时,函数内局部变 ...

  7. 使用kendynet编写网关服务

    网游服务器大多提供了网关服务,用于作为用户和内部服务器组之间通信代理.网关服务一方面将用户消息从客户端分发到正确的内部服务器. 另一方面将来自内部服务器的数据包转发给客户端.一般对于网关应用来说,压力 ...

  8. Sqlserver 数据库、表常用查询操作

    查询所有表以及记录数: select a.name as 表名,max(b.rows) as 记录条数 from sysobjects a ,sysindexes b where a.id=b.id ...

  9. Material Design系列第三篇——Using the Material Theme

    Using the Material Theme This lesson teaches you to Customize the Color Palette Customize the Status ...

  10. 【小程序+thinkphp5】 用户登陆,返回第三方session3rd

    服务器环境: centos7   php7.0 准备工作: 注册小程序,并获取 appid .appsecret 下载微信解密算法sdk : https://mp.weixin.qq.com/debu ...