from NumPy import *

函数形式: tile(A,rep)

功能:重复A的各个维度

参数类型:

- A: Array类的都可以

- rep:A沿着各个维度重复的次数

这个英文单词的本意是:贴瓷砖,还挺形象的。

举例:

tile([17,29],2),如果rep参数是一个整数,则表示重复A中的元素rep次,即行数(即维度)只有1维,所以2的意思是在“列”这个维度上重复2次

输出[17,29,17,29]

tile([29,17],(3,5))

此时的(3,5)和[3,5]是相同的效果。

结果是3组,每组重复5次,也可以理解为二维表,3行,5列。先分3组(重复3次),每组重复5次。

array([[29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17]])

tile([29,17],[3,5,7])

结果是3组,每组一个二维表,每个二维表5行,7列,可以理解为三维表

array([[[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17]]])

tile([29,17],[3,5,7,4])

结果是4组,怎样理解?我也不知道,这已经超过了人类空间的认知。

依次分组,先分3组重复,然后分5组重复,然后分7组,最后重复4次。

如果5维会怎样?也是继续按组重复下去。先分5组,用中括号分隔。

array([[[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]]],

[[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]]],

[[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]]]])

Python模块NumPy中的tile(A,rep) 函数的更多相关文章

  1. Python:numpy中的tile函数

    在学习机器学习实教程时,实现KNN算法的代码中用到了numpy的tile函数,因此对该函数进行了一番学习: tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复 ...

  2. Mathab和Python的numpy中的数组维度

    Matlab和Python的numpy在维度索引方面的不同点: 1.索引的起始点不同:Matlab起始位置的索引为1,Python为0. 2.索引的括号不同:Matlab中元素可以通过小括号表示索引, ...

  3. python和numpy中sum()函数的异同

    转载:https://blog.csdn.net/amuchena/article/details/89060798和https://www.runoob.com/python/python-func ...

  4. numpy中的tile函数

    tile()函数可以很方便的生成多维数组.它有两个参数,第一个数是原始数组;第二个表示如何来生成,第一个数字表示生成几行,第二个表示每行有多少个原始数组(如果只写一个数字,那么就默认是一行). fro ...

  5. python模块collections中namedtuple()的理解

    Python中存储系列数据,比较常见的数据类型有list,除此之外,还有tuple数据类型.相比与list,tuple中的元素不可修改,在映射中可以当键使用.tuple元组的item只能通过index ...

  6. python模块win32com中的early-bind与lazy-bind(以Autocad为例)

    1.什么是Lazy-bind模式,Early-bind模式? win32com中,Lazy-bind 模式指的是程序事先不知道对象的任何方法和属性,当对象属性,方法被调用时,程序才向对象发出一个询问( ...

  7. Python模块包中__init__.py文件的作用

    转载自:http://hi.baidu.com/tjuer/item/ba37ac4ce7482a0f6dc2f08b 模块包: 包通常总是一个目录,目录下为首的一个文件便是 __init__.py. ...

  8. python类库numpy中常见函数的用法

    1. numpy.reshape  重塑 reshape是一种函数,函数可以重新调整矩阵的行数.列数.维数. B = reshape(A,m,n) 返回一个m*n的矩阵B, B中元素是按列从A中得到的 ...

  9. 【python】Numpy中stack(),hstack(),vstack()函数详解

    转自 https://blog.csdn.net/csdn15698845876/article/details/73380803 这三个函数有些相似性,都是堆叠数组,里面最难理解的应该就是stack ...

随机推荐

  1. SpringBoot------热部署(devtools)(推荐)

    1.修改pom.xml文件 <project> <dependencies> <!-- 使用devtool热部署插件(推荐) --> <dependency& ...

  2. 【Android】ProgressBar

    http://www.cnblogs.com/wangying222/p/5304990.html http://www.cnblogs.com/plokmju/p/android_ProgressB ...

  3. 配置Django框架为生产环境的注意事项(DEBUG=False)

    问题描述: Django1.10版本中框架中settings.py配置文件 配置文件settings.py配置了下面两项: DEBUG= False ALLOWED_HOSTS = ['*'] #这样 ...

  4. UISegmentedControl的基本用法

    本文转载至 http://www.tuicool.com/articles/yUfURj 原文  http://blog.csdn.net/hmt20130412/article/details/38 ...

  5. 119、 android:hardwareAccelerated="true"or"false"硬件加速的重要性

    每次做项目都会遇见一些特别简单的问题,但是又很费时间来让你解决的问题. 1.本身想实现一个简单的画廊效果,可是每次图片的显示都不能显示在正中的位置,真的很烦人,也花费了很长时间.最终还是知道了原因.解 ...

  6. 百度地图API接口

    js <script type="text/javascript"> // 百度地图API功能 var map = new BMap.Map("map&quo ...

  7. 【面试题】新东方.NET工程师面试题总结

    1.学校几本(是否统招).英语等级.大学成绩排名Top%几.当前月薪(入职前是否能提供薪资证明材料).期望月薪 二本,统招英语四级排名top10 2.做过的项目技术栈是什么?(例如 .NET.Sql ...

  8. Androidの矢量图形之VectorDrawable研究

    5.0以上支持VectorDrawable了,可以创建vector的xml资源文件.vector其实就使用来绘制矢量图形的. 看一个例子: <?xml version="1.0&quo ...

  9. springboot---->springboot中的格式化(一)

    这里面我们简单的学习一下springboot中关于数据格式化的使用.我以为你不是个好人,没想到你连个坏人都不是. springboot中的格式化 我们的测试环境是springboot,一个将字符串格式 ...

  10. SharpGL学习笔记(九) OpenGL的光照模型, 术语解释

    在3D场景中,每个像素最终显示出来的颜色都是经过大量计算而得到的,其中一些计算是依赖于场景中的光照以及场景中物体对光线的反射和吸收情况. 例如,对于一个红色的物体, 在白色光(白光是红光,绿光和蓝光等 ...