【转载请注明出处】http://www.cnblogs.com/mashiqi

2017/06/16

适合于自己的关于Jacobi-Anger expansion的推导方法,这里记下来,方便以后查阅。

现记住下面四个关系式:

\begin{align*}
& (1)~ |x-y|=|x| -\hat{x} \cdot y + \mathcal{O}\left(\frac{1}{|x|}\right), ~|x| \to +\infty. \\
& (2)~ \sum_{m=-n}^{n} Y_n^m(\hat{x})\overline{Y_n^m(\hat{y})} = \frac{2n+1}{4\pi} P_n(\cos\theta). \\
& (3)~ \Phi (x,y) \triangleq \frac{e^{ik|x-y|}}{4\pi|x-y|} = ik \sum_{n=-\infty}^{\infty}\sum_{m=-n}^{n} h_n^{(1)}(k|x|)Y_n^m(\hat{x}) j_n(k|y|)\overline{Y_n^m(\hat{y})}, \forall~ |x| > |y|. \\
&(4)~ h_n^{(1)}(t) = \frac{1}{i^{n+1}t} e^{it} \left\{1 + \mathcal{O}\left(\frac{1}{t}\right)\right\}, ~t \to +\infty.
\end{align*}

于是当$|x|$充分大时,我们可以得到

\begin{align*}
\frac{e^{ik|x-y|}}{4\pi|x-y|} & = \frac{e^{ik|x|}}{4\pi|x|} \left\{ e^{-ik\hat{x} \cdot y} + \mathcal{O}\left(\frac{1}{|x|}\right) \right\} \\
& = ik \sum_{n=-\infty}^{\infty}\sum_{m=-n}^{n} h_n^{(1)}(k|x|)Y_n^m(\hat{x}) j_n(k|y|)\overline{Y_n^m(\hat{y})} \\
& = ik \sum_{n=-\infty}^{\infty} \left\{ j_n(k|y|)h_n^{(1)}(k|x|) \left[ \sum_{m=-n}^{n} Y_n^m(\hat{x}) \overline{Y_n^m(\hat{y})} \right] \right\} \\
& = ik \sum_{n=-\infty}^{\infty} \left\{ j_n(k|y|)h_n^{(1)}(k|x|) \frac{2n+1}{4\pi} P_n(\cos\theta) \right\} \\
& = ik \sum_{n=-\infty}^{\infty} \frac{2n+1}{4\pi} j_n(k|y|) P_n(\cos\theta) h_n^{(1)}(k|x|) \\
& = ik \sum_{n=-\infty}^{\infty} \frac{2n+1}{4\pi} j_n(k|y|) P_n(\cos\theta) \frac{e^{ik|x|}}{i^{n+1}k|x|} \left\{1 + \mathcal{O}\left(\frac{1}{|x|}\right)\right\} \\
& = \frac{e^{ik|x|}}{4\pi |x|} \sum_{n=-\infty}^{\infty} \frac{2n+1}{i^n} j_n(k|y|) P_n(\cos\theta) \left\{1 + \mathcal{O}\left(\frac{1}{|x|}\right)\right\} \\
& = \frac{e^{ik|x|}}{4\pi |x|} \left\{ \sum_{n=-\infty}^{\infty} \frac{2n+1}{i^n} j_n(k|y|) P_n(\cos\theta) + \mathcal{O}\left(\frac{1}{|x|}\right)\right\}.
\end{align*}

于是$$e^{-ik\hat{x} \cdot y} = \sum_{n=-\infty}^{\infty} \frac{2n+1}{i^n} j_n(k|y|) P_n(\cos\theta).$$将$\hat{x}$换做$-d$,$y$换做$x$,可得:

\begin{align*}
e^{ikd \cdot x} & = \sum_{n=-\infty}^{\infty} \frac{2n+1}{i^n} j_n(k|x|) P_n(\cos(\pi-\theta)) \\
& = \sum_{n=-\infty}^{\infty} \frac{2n+1}{i^n} j_n(k|x|) (-1)^n P_n(\cos\theta) \\
& = \sum_{n=-\infty}^{\infty} i^n(2n+1) j_n(k|x|) P_n(\cos\theta).
\end{align*}

Jacobi-Anger expansion的更多相关文章

  1. Protecting against XML Entity Expansion attacks

    https://blogs.msdn.microsoft.com/tomholl/2009/05/21/protecting-against-xml-entity-expansion-attacks/ ...

  2. in-list expansion

    in-list expansion也被称作or expansion --针对in后面是常量集合的另外一种处理方法.优化器会把目标sql中in后面的常量集合拆开,把里面的每个常量都提出来形成一个分支,各 ...

  3. BigDecimal除法运算出现java.lang.ArithmeticException: Non-terminating decimal expansion; no exact representable decimal result的解决办法

    BigDecimal除法运算出现java.lang.ArithmeticException: Non-terminating decimal expansion; no exact represent ...

  4. Project Euler 80:Square root digital expansion 平方根数字展开

    Square root digital expansion It is well known that if the square root of a natural number is not an ...

  5. Jacobi symbol(裸雅可比符号)

    Jacobi symbol Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  6. poj 3168 Barn Expansion 几何yy

    题链:http://poj.org/problem? id=3168 Barn Expansion Time Limit: 1000MS   Memory Limit: 65536K Total Su ...

  7. poj3358 Period of an Infinite Binary Expansion

    Period of an Infinite Binary Expansion 题目大意:给你一个分数,求这个分数二进制表示下从第几位开始循环,并求出最小循环节长度. 注释:int范围内. 想法:这题说 ...

  8. expansion pattern ‘Frame&’ contains no argument packs

    camera/CameraImpl.h::: error: expansion pattern ‘Frame&’ contains no argument packs void read_fr ...

  9. UVA12627-Erratic Expansion(递归)

    Problem UVA12627-Erratic Expansion Accept: 465  Submit: 2487Time Limit: 3000 mSec Problem Descriptio ...

  10. 论文笔记系列-Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion

    论文: Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion 我们都知道实现AutoML的基本思路 ...

随机推荐

  1. Python 静态方法,类方法,属性方法

    方法的使用 静态方法 - 只是名义上归类管理,实际上在静态方法里访问不了类或实例中的任何属性. class Dog(object): def __init__(self,name): self.nam ...

  2. 【题解】Luogu P2763 试题库问题

    原题传送门 这题很简单啊 从源点向k类题目分别连流量为所需数量的边 从每道题向汇点连一条流量为1的边(每题只能用1次) 从类型向对应的题目连一条流量为1的边 跑一遍最大流 如果最大流小于所需题目数量, ...

  3. python学习笔记:装饰器2

    python的装饰器本质是函数,为了不改变装饰目标函数内部代码而增加额外功能而存在 一.一般装饰函数实例: import datetime def func_name(func):#定义一个装饰函数, ...

  4. opencv学习之路(26)、轮廓查找与绘制(五)——最小外接矩形

    一.简介 二.轮廓最小外接矩形的绘制 #include "opencv2/opencv.hpp" using namespace cv; void main() { //轮廓最小外 ...

  5. 剑指offer(33)丑数

    题目描述 把只包含因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N个丑数. 题目分析 ...

  6. loj2353. 「NOI2007」 货币兑换

    loj2353. 「NOI2007」 货币兑换 链接 https://loj.ac/problem/2353 思路 题目不重要,重要的是最后一句话 提示 输入文件可能很大,请采用快速的读入方式. 必然 ...

  7. Python入门 函数式编程

    高阶函数 map/reduce from functools import reduce def fn(x, y): return x * 10 + y def char2num(s): digits ...

  8. 【SQL Server 问题记录】A network-related or instance-specific error occurred while establishing a connection to SQL Server. The server was not found or was not accessible.

    本文涉及的相关问题,如果你的问题或需求有与下面所述相似之处,请阅读本文 A network-related or instance-specific error occurred while esta ...

  9. JavaScript(数组、Date、正则)

    数组 创建数组 // 一.自变量创建数组 // 1-通过字面量创建一个空数组 var arr1 = []; console.log(arr1) console.log(typeof arr1); // ...

  10. linux iso 下载地址

    Centos 5.3  下载地址: http://www.karan.org/mock/5.3/CentOS-5.3-i386-bin-1to6.torrent http://www.karan.or ...