AI robots CodeForces - 1045G (cdq分治)
大意: n个机器人, 位置$x_i$, 可以看到$[x_i-r_i,x_i+r_i]$, 智商$q_i$, 求智商差不超过$k$且能互相看到的机器人对数.
这个题挺好的, 关键是要求互相看到这个条件, 直接求的话是个四维数点问题, 但是可以发现按照$r$排序后, $r$小的能看到的一定能互相看到, 所以就是一个简单的三维数点了.
#include <iostream>
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head #ifdef ONLINE_JUDGE
const int N = 1e6+10;
#else
const int N = 111;
#endif int n, k, tot, b[N];
struct _ {
int type,x,y;
void pr() {
printf("tp=%d,x=%d,y=%d\n",type,x,y);
}
bool operator < (const _ & rhs) const {
if (x!=rhs.x) return x<rhs.x;
if (y!=rhs.y) return y<rhs.y;
return type<rhs.type;
}
} e[N];
struct __ {
int x,r,q;
} a[N]; ll ans;
int c[N], tim[N], clk;
void add(int x) {
for (; x<=*b; x+=x&-x) tim[x]==clk?++c[x]:c[x]=1,tim[x]=clk;
}
int qry(int x) {
int r = 0;
for (; x; x^=x&-x) tim[x]==clk?r+=c[x]:0;
return r;
}
void merge(int l, int r) {
if (l==r) return;
merge(l,mid),merge(mid+1,r);
int now = l;
++clk;
REP(i,mid+1,r) {
while (now<=mid&&e[now].x<=e[i].x) {
if (e[now].type==0) add(e[now].y);
++now;
}
if (e[i].type==1) ans+=qry(e[i].y);
else if (e[i].type==2) ans-=qry(e[i].y);
}
inplace_merge(e+l,e+mid+1,e+r+1);
}
int id(int x) {
return lower_bound(b+1,b+1+*b,x)-b;
} void add(int x, int y) {
y = id(y);
e[++tot] = {0,x,y};
}
void qry(int x1, int y1, int x2, int y2) {
y1 = id(y1), y2 = id(y2);
e[++tot] = {1,x2,y2};
e[++tot] = {1,x1-1,y1-1};
e[++tot] = {2,x1-1,y2};
e[++tot] = {2,x2,y1-1};
} int main() {
scanf("%d%d", &n, &k);
REP(i,1,n) {
scanf("%d%d%d", &a[i].x, &a[i].r, &a[i].q);
b[++*b]=a[i].q,b[++*b]=a[i].q+k,b[++*b]=a[i].q-k-1;
}
sort(a+1,a+1+n,[](__ a,__ b){return a.r>b.r;});
sort(b+1,b+1+*b),*b=unique(b+1,b+1+*b)-b-1;
REP(i,1,n) {
qry(a[i].x-a[i].r,a[i].q-k,a[i].x+a[i].r,a[i].q+k);
add(a[i].x,a[i].q);
}
merge(1,tot);
printf("%lld\n", ans);
}
AI robots CodeForces - 1045G (cdq分治)的更多相关文章
- 【题解】Radio stations Codeforces 762E CDQ分治
虽然说好像这题有其他做法,但是在问题转化之后,使用CDQ分治是显而易见的 并且如果CDQ打的熟练的话,码量也不算大,打的也很快,思维难度也很小 没学过CDQ分治的话,可以去看看我的另一篇博客,是CDQ ...
- Radio stations CodeForces - 762E (cdq分治)
大意: 给定$n$个三元组$(x,r,f)$, 求所有对$(i,j)$, 满足$i<j, |f_i-f_j|\le k, min(r_i,r_j)\ge |x_i-x_j|$ 按$r$降序排, ...
- Codeforces 669E cdq分治
题意:你需要维护一个multiset,支持以下操作: 1:在某个时间点向multiset插入一个数. 2:在某个时间点在multiset中删除一个数. 3:在某个时间点查询multiset的某个数的个 ...
- Tufurama CodeForces - 961E (cdq分治)
题面 One day Polycarp decided to rewatch his absolute favourite episode of well-known TV series " ...
- Codeforces 1045G AI robots [CDQ分治]
洛谷 Codeforces 简单的CDQ分治题. 由于对话要求互相看见,无法简单地用树套树切掉,考虑CDQ分治. 按视野从大到小排序,这样只要右边能看见左边就可以保证互相看见. 发现\(K\)固定,那 ...
- Educational Codeforces Round 41 967 E. Tufurama (CDQ分治 求 二维点数)
Educational Codeforces Round 41 (Rated for Div. 2) E. Tufurama (CDQ分治 求 二维点数) time limit per test 2 ...
- Codeforces 1093E Intersection of Permutations [CDQ分治]
洛谷 Codeforces 思路 一开始想到莫队+bitset,发现要T. 再想到分块+bitset,脑子一抽竟然直接开始写了,当然也T了. 最后发现这就是个裸的CDQ分治-- 发现\(a\)不变,可 ...
- Codeforces 848C Goodbye Souvenir [CDQ分治,二维数点]
洛谷 Codeforces 这题我写了四种做法-- 思路 不管做法怎样,思路都是一样的. 好吧,其实不一样,有细微的差别. 第一种 考虑位置\(x\)对区间\([l,r]\)有\(\pm x\)的贡献 ...
- Codeforces 526F Pudding Monsters - CDQ分治 - 桶排序
In this problem you will meet the simplified model of game Pudding Monsters. An important process in ...
随机推荐
- redis发布订阅、事务、脚本
Redis 发布订阅 Redis 发布订阅(pub/sub)是一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息. Redis 客户端可以订阅任意数量的频道. 下图展示了频道 cha ...
- vue -about
j基于webpack4 搭建vue 环境:https://juejin.im/post/5bc30d5fe51d450ea1328877
- 关于Java8 Stream流的利与弊 Java初学者,大神勿喷
题目需求: 1:第一个队伍只要名字为3个字成员的姓名,存储到新集合 2:第一个队伍筛选之后只要前3人:存储到一个新集合 3:第2个队伍只要姓张的成员姓名:存储到一个新集合 4:第2个队伍不要前2人,存 ...
- MySql使用存储过程清除数据库所有表数据,保存数据结构
BEGIN DECLARE strClear VARCHAR(256); DECLARE done INT DEFAULT 0; #定义游标 DECLARE curOne CURSOR FOR sel ...
- TP无限回复
引入文件和css样式 <script src="__PUBLIC__/bootstrap/js/jquery-1.11.2.min.js"></script> ...
- z-tree学习笔记
做项目时,需要用到带复选框的tree.经比较后优选了ztree,功能强大,文档清晰. http://www.treejs.cn/v3/api.php 直接上代码吧. 1.下载ztree后.将里面需要用 ...
- python fabric的用法
1. Fabric的任务运行规则根据Fabric Execution model的说明,fabric默认以串行方式运行tasks,具体而言: 1)在fabfile及其import文件中定义的task对 ...
- MongoExport后的负载均衡问题查询及解决:can't accept new chunks because there are still 2 deletes from previous migration
问题 前一阵有一个数据导出需求,按照各种数据库的使用方法,使用MongoExport方法导出数据,将数据导出到本地文件系统,在导出之后遇到此问题. 此问题和mongoexport的原理有关,我们知道数 ...
- k-means算法 - 数据挖掘算法(5)
(2017-05-02 银河统计) k-means算法,也被称为k-平均或k-均值,是数据挖掘技术中一种广泛使用的聚类算法. 它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点,算法的主要思想 ...
- MySQL5.7 编译安装
准备 yum install cmake yum install -y bison yum install -y libaio-devel yum install -y boost 下载 percon ...