课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals
Learning Goals
- Understand multiple foundational papers of convolutional neural networks
- Analyze the dimensionality reduction of a volume in a very deep network
- Understand and Implement a Residual network
- Build a deep neural network using Keras
- Implement a skip-connection in your network
- Clone a repository from github and use transfer learning
学习目标
课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals的更多相关文章
- Convolutional Neural Networks: Step by Step
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- Convolutional Neural Networks: Application
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer
Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 3.Programming assignments:Convolutional Model: application
Convolutional Neural Networks: Application Welcome to Course 4's second assignment! In this notebook ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 2.Programming assignments:Convolutional Model: step by step
Convolutional Neural Networks: Step by Step Welcome to Course 4's first assignment! In this assignme ...
- [C4W2] Convolutional Neural Networks - Deep convolutional models: case studies
第二周 深度卷积网络:实例探究(Deep convolutional models: case studies) 为什么要进行实例探究?(Why look at case studies?) 这周我们 ...
- ImageNet Classification with Deep Convolutional Neural Networks(译文)转载
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- 中文版 ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...
随机推荐
- php面试题五之nginx如何调用php和php-fpm的作用和工作原理
nginx如何调用php 采用nginx+php作为webserver的架构模式,在现如今运用相当广泛.然而第一步需要实现的是如何让nginx正确的调用php.由于nginx调用php并不是如同调用一 ...
- 随笔 | 分布式版本控制系统Git的安装与使用
作业要求来自https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/2097 GitHub远程仓库的地址https://github.com/W ...
- adb pull 文件夹到电脑
正常来讲是支持文件夹的. 但实际执行的时候发现: pull: building file list...0 files pulled. 0 files skipped. 其实出现这个提示,归根到底还是 ...
- HDU 6214.Smallest Minimum Cut 最少边数最小割
Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Oth ...
- Json中对日期的处理
前言:Json对日期的处理很特别,我们不能简单的转换而得到我们想要的结果,需要进行特殊处理 一.JSon序列化和反序列化对日期的处理 JsonHelper类: using System.IO; usi ...
- ABP框架系列之三:(Entity Framework Integration-实体框架集成)
ASP.NET Boilerplate can work with any O/RM framework. It has built-in integration with EntityFramewo ...
- 获得文件的CRC32值
使用方法:先调用init_crc32_tab生成查询表,再调用calc_img_crc获得文件的CRC值. #define Poly 0xEDB88320L//CRC32标准 ];//CRC查询表 / ...
- Spring mvc解决url传递中文参数乱码问题
在tomcat服务器中,修改server.xml参数,如<Connector URIEncoding="UTF-8" connectionTimeout="2000 ...
- python_day1_程序交互
程序交互 在编写程序过程中总会有程序与用户交互的场景出现,这里面提到python会使用一个方法:input 用法: 例如:请用户输入一个账号 input"Please input your ...
- Paper | Contrast Limited Adaptive Histogram Equalization
目录 1. 背景 1.1. 对比度和直方图均衡HE 1.2. HE的问题 1.3. AHE 1.4. 底噪问题 2. CLAHE 2.1. 效果展示 2.2. 算法格式和细节 论文:Contrast ...