课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals
Learning Goals
- Understand multiple foundational papers of convolutional neural networks
- Analyze the dimensionality reduction of a volume in a very deep network
- Understand and Implement a Residual network
- Build a deep neural network using Keras
- Implement a skip-connection in your network
- Clone a repository from github and use transfer learning
学习目标
课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals的更多相关文章
- Convolutional Neural Networks: Step by Step
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- Convolutional Neural Networks: Application
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer
Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 3.Programming assignments:Convolutional Model: application
Convolutional Neural Networks: Application Welcome to Course 4's second assignment! In this notebook ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 2.Programming assignments:Convolutional Model: step by step
Convolutional Neural Networks: Step by Step Welcome to Course 4's first assignment! In this assignme ...
- [C4W2] Convolutional Neural Networks - Deep convolutional models: case studies
第二周 深度卷积网络:实例探究(Deep convolutional models: case studies) 为什么要进行实例探究?(Why look at case studies?) 这周我们 ...
- ImageNet Classification with Deep Convolutional Neural Networks(译文)转载
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- 中文版 ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...
随机推荐
- C++对象的内存分布和虚函数表
c++中一个类中无非有四种成员:静态数据成员和非静态数据成员,静态函数和非静态函数. 1.非静态数据成员被放在每一个对象体内作为对象专有的数据成员. 2.静态数据成员被提取出来放在程序的静态数据 ...
- java_20 LinkedList类
LinkedList类特有的方法 (1)addLast() 将指定元素添加到此列表的结尾. addFirst() 将指定元素添加到此列表的开始. public static void main(St ...
- tween 缓动动画
在讲tween类之前,不得不提的是贝塞尔曲线了.首先,贝塞尔曲线是指依据四个位置任意的点坐标绘制出的一条光滑曲线.它在作图工具或动画中中运用得比较多,例如PS中的钢笔工具,firework中的画笔等等 ...
- SQL笔试基础
SQLSERVER服务器中,给定表table1 中有两个字段 ID.LastUpdateDate,ID表示更新的事务号,LastUpdateDate表示更新时的服务器时间,请使用一句SQL语句获得最后 ...
- 在cmd下可以import cv2,而Pycharm报错:找不到cv2
平台:win10 x64+Pycharm+Anaconda3+opencv 安装教程:参考博客——http://blog.sina.com.cn/s/blog_cca23c300102xiy4.htm ...
- centos7安装python3.6后导致防火墙功能无法正常工作的解决办法
问题:因为默认python版本被设置成了python3.6,而进行防火墙的指令操作频频报错. Jul 19 16:30:51 localhost.localdomain systemd[1]: Sta ...
- Struts2学习第四天——全局结果,动态结果及异常映射
1.异常映射的配置 当Action方法出错时Struts会返回异常错误信息页面,这种页面方式是不友好的,可以使用try-catch捕捉异常,然后在catch块中返回对应的错误页面.这种为单个<a ...
- 21.ArrayList
ArrayList是实现List接口的动态数组,所谓动态就是它的大小是可变的.实现了所有可选列表操作,并允许包括 null 在内的所有元素.除了实现 List 接口外,此类还提供一些方法来操作内部用来 ...
- CentOS添加明细路由
网络架构图 根据最近为客户设计的网络架构,简单的梳理一个网路架构图,当然实际上的网络架构要比这个架构图复杂的多,咱们这边只是用这个图作为一个简单的示例. 拓扑分析 我们要实现专线两端不同网段的 ...
- RunTime之类与对象
我们知道,Objective-C是一门动态语言,它将很多静态语言在编译时期做的事放到了运行时来处理.用C++编写的程序通过编译器直接把函数地址硬编码进入可执行文件:而Objective-C无法通过编译 ...