看到八皇后问题的解决思路, 感觉很喜欢。 我用C#实现的版本之前贴在了百度百科上(https://baike.baidu.com/item/%E5%85%AB%E7%9A%87%E5%90%8E%E9%97%AE%E9%A2%98#2_7)。百度百科已经有Python版本, 且效率比我的高一点儿, 所以决定把我的版本在博客园贴出来。相信我的版本更容易理解。 希望能够对大家有所帮助。上代码:

Python:

# EightQueens.py
def checkConflict(queenList, nextY):
for posY in range(nextY):
if abs(queenList[posY]-queenList[nextY])==abs(posY-nextY) or queenList[posY] == queenList[nextY]:
return True
return False count = 0
def putQueen(queenCount, queenList, nextY):
for queenList[nextY] in range(queenCount):
if checkConflict(queenList, nextY)==False:
nextY+=1 if nextY < queenCount:
putQueen(queenCount, queenList, nextY)
else:
global count
count+=1
print(str(count)+": " + ", ".join(str(pos) for pos in queenList)) nextY-=1 # call the method
queenCount = 12
queenList = [0] * queenCount
putQueen(queenCount, queenList, 0)

C#:

// EightQueens.cs
namespace EightQueens
{
class EightQueens
{
private bool checkConflict(List<int> queenList, int nextY)
{
for (int positionY = 0; positionY < nextY; positionY++)
{
if (Math.Abs(queenList[positionY] - queenList[nextY]) == Math.Abs(positionY - nextY) || queenList[positionY] == queenList[nextY])
{
return true;
}
}
return false;
} long count = 0;
public void putQueen(int queenCount, List<int> queenList, int nextY)
{
for (queenList[nextY] = 0; queenList[nextY] < queenCount; queenList[nextY]++)
{
if (checkConflict(queenList, nextY) == false)
{
nextY++;
if (nextY < queenCount)
{
putQueen(queenCount, queenList, nextY);
}
else
{
count++;
Console.WriteLine(count.ToString() + ": " + string.Join(", ", queenList));
}
nextY--;
}
}
}
}
}

方法调用:

// Program.cs
namespace EightQueens
{
class Program
{
static void Main(string[] args)
{
int queenCount = 12;
List<int> queenList = new List<int>();
for (int i = 0; i < queenCount; i++)
{
queenList.Add(0);
} new EightQueens().putQueen(queenCount, queenList, 0);
Console.ReadKey();
}
}
}

当Queen的数量越多, 可以看到Python和C#的效率差距越大。18个Queen,运行几分钟之后:

八皇后问题的Python实现和C#实现的更多相关文章

  1. Python学习二(生成器和八皇后算法)

    看书看到迭代器和生成器了,一般的使用是没什么问题的,不过很多时候并不能用的很习惯 书中例举了经典的八皇后问题,作为一个程序员怎么能够放过做题的机会呢,于是乎先自己来一遍,于是有了下面这个ugly的代码 ...

  2. Python解决八皇后问题

    最近看Python看得都不用tab键了,哈哈.今天看了一个经典问题--八皇后问题,说实话,以前学C.C++的时候有这个问题,但是当时不爱学,没搞会,后来算法课上又碰到,只是学会了思想,应该是学回溯法的 ...

  3. 八皇后,回溯与递归(Python实现)

    八皇后问题是十九世纪著名的数学家高斯1850年提出 .以下为python语句的八皇后代码,摘自<Python基础教程>,代码相对于其他语言,来得短小且一次性可以打印出92种结果.同时可以扩 ...

  4. 【算法导论】八皇后问题的算法实现(C、MATLAB、Python版)

    八皇后问题是一道经典的回溯问题.问题描述如下:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8*8个方格),使它们谁也不能被吃掉?         看到这个问题,最容易想 ...

  5. Python 八皇后问题

    八皇后问题描述:在一个8✖️8的棋盘上,任意摆放8个棋子,要求任意两个棋子不能在同一行,同一列,同一斜线上,问有多少种解法. 规则分析: 任意两个棋子不能在同一行比较好办,设置一个队列,队列里的每个元 ...

  6. 【算法】八皇后问题 Python实现

    [八皇后问题] 问题: 国际象棋棋盘是8 * 8的方格,每个方格里放一个棋子.皇后这种棋子可以攻击同一行或者同一列或者斜线(左上左下右上右下四个方向)上的棋子.在一个棋盘上如果要放八个皇后,使得她们互 ...

  7. 带你轻而易举的学习python——八皇后问题

    首先我们来看一下这个著名的八皇后问题 八皇后问题:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 在这个问题提出之后人们又将 ...

  8. Python解决八皇后问题的代码【解读】

    八皇后问题 来自于西方象棋(现在叫 国际象棋,英文chess),详情可见百度百科. 在西方象棋中,有一种叫做皇后的棋子,在棋盘上,如果双方的皇后在同一行.同一列或同一斜线上,就会互相攻击. 八皇后问题 ...

  9. python基础教程总结8——特殊方法,属性,迭代器,生成器,八皇后问题

    1. 重写一般方法和特殊的构造方法 1.1 如果一个方法在B类的一个实例中被调用(或一个属性被访问),但在B类中没有找到该方法,那么会去它的超类A里面找. class A: ... def hello ...

随机推荐

  1. jdk8- list操作

    本文版权归 远方的风lyh和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. student类 public class Student { private String age; ...

  2. Docker容器的创建、启动、和停止

    1.容器是独立运行的一个或一组应用,及他们的运行环境.容器是Docker中的一个重要的概念. 2.docker容器的启动有三种方式a.交互方式,基于镜像新建容器并启动例如我们可以启动一个容器,打印出当 ...

  3. FFmpeg数据结构AVFrame

    本文为作者原创,转载请注明出处:https://www.cnblogs.com/leisure_chn/p/10404502.html 本文基于FFmpeg 4.1版本. 1. 数据结构定义 stru ...

  4. 操作Linux系统环境变量的几种方法

    一.使用environ指针输出环境变量 代码如下: #include<stdio.h> #include<string.h> #define MAX_INPUT 20 /* 引 ...

  5. 使用css的类名交集复合选择器 《转》

    复合选择器就是两个或多个基本选择器,通过不同方式连接而成的选择器,主要包括“交集”选择器.“并集”选择器.“后代”选择器. 交集选择器 “交集”复合选择器是由两个选择器直接连接构成,其结果是选中二者各 ...

  6. session持久化到sqlserver

    每次想使用都会忘记单词,所幸记录下来.简单步骤记录. 第一步:找到cmd目录 输入:cd C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727 进入该目录. 第二 ...

  7. 漫画|你还记得原生的JDBC怎么连接数据库吗?

    数据表的设计范式 在实际开发中最为常见的设计范式有三个: 第一范式是最基本的范式.如果数据库表中的所有字段值都是不可分解的原子值,就说明该数据库表满足了第一范式: 第二范式需要确保数据库表中的每一列都 ...

  8. Java基础回顾Application(一)

    Java Web 中application(应用级) session(会话级) request(请求级) 在JavaWeb 中实现数据共享往往通过定义属性的方法来实现,而什么是属性呢?它类似于Hash ...

  9. Servlet—Cookie(显示用户上次访问时间、显示商品浏览历史)

    1 . 什么是会话? 会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话. 1.1 会话过程中要解决的一些问题? 每个用户在使用浏览器 ...

  10. 列表中文字太多 溢出使用省略号css方法

    我们经常会遇到文字太多,而为了不打破原有布局,需要将多出文字用省略号代替,实现以下效果: 文字太太太太多多多啦...... 这个不多. html:这是个列表.ul/ol都行. <ul> & ...