八皇后问题的Python实现和C#实现
看到八皇后问题的解决思路, 感觉很喜欢。 我用C#实现的版本之前贴在了百度百科上(https://baike.baidu.com/item/%E5%85%AB%E7%9A%87%E5%90%8E%E9%97%AE%E9%A2%98#2_7)。百度百科已经有Python版本, 且效率比我的高一点儿, 所以决定把我的版本在博客园贴出来。相信我的版本更容易理解。 希望能够对大家有所帮助。上代码:
Python:
# EightQueens.py
def checkConflict(queenList, nextY):
for posY in range(nextY):
if abs(queenList[posY]-queenList[nextY])==abs(posY-nextY) or queenList[posY] == queenList[nextY]:
return True
return False count = 0
def putQueen(queenCount, queenList, nextY):
for queenList[nextY] in range(queenCount):
if checkConflict(queenList, nextY)==False:
nextY+=1 if nextY < queenCount:
putQueen(queenCount, queenList, nextY)
else:
global count
count+=1
print(str(count)+": " + ", ".join(str(pos) for pos in queenList)) nextY-=1 # call the method
queenCount = 12
queenList = [0] * queenCount
putQueen(queenCount, queenList, 0)
C#:
// EightQueens.cs
namespace EightQueens
{
class EightQueens
{
private bool checkConflict(List<int> queenList, int nextY)
{
for (int positionY = 0; positionY < nextY; positionY++)
{
if (Math.Abs(queenList[positionY] - queenList[nextY]) == Math.Abs(positionY - nextY) || queenList[positionY] == queenList[nextY])
{
return true;
}
}
return false;
} long count = 0;
public void putQueen(int queenCount, List<int> queenList, int nextY)
{
for (queenList[nextY] = 0; queenList[nextY] < queenCount; queenList[nextY]++)
{
if (checkConflict(queenList, nextY) == false)
{
nextY++;
if (nextY < queenCount)
{
putQueen(queenCount, queenList, nextY);
}
else
{
count++;
Console.WriteLine(count.ToString() + ": " + string.Join(", ", queenList));
}
nextY--;
}
}
}
}
}
方法调用:
// Program.cs
namespace EightQueens
{
class Program
{
static void Main(string[] args)
{
int queenCount = 12;
List<int> queenList = new List<int>();
for (int i = 0; i < queenCount; i++)
{
queenList.Add(0);
} new EightQueens().putQueen(queenCount, queenList, 0);
Console.ReadKey();
}
}
}
当Queen的数量越多, 可以看到Python和C#的效率差距越大。18个Queen,运行几分钟之后:

八皇后问题的Python实现和C#实现的更多相关文章
- Python学习二(生成器和八皇后算法)
看书看到迭代器和生成器了,一般的使用是没什么问题的,不过很多时候并不能用的很习惯 书中例举了经典的八皇后问题,作为一个程序员怎么能够放过做题的机会呢,于是乎先自己来一遍,于是有了下面这个ugly的代码 ...
- Python解决八皇后问题
最近看Python看得都不用tab键了,哈哈.今天看了一个经典问题--八皇后问题,说实话,以前学C.C++的时候有这个问题,但是当时不爱学,没搞会,后来算法课上又碰到,只是学会了思想,应该是学回溯法的 ...
- 八皇后,回溯与递归(Python实现)
八皇后问题是十九世纪著名的数学家高斯1850年提出 .以下为python语句的八皇后代码,摘自<Python基础教程>,代码相对于其他语言,来得短小且一次性可以打印出92种结果.同时可以扩 ...
- 【算法导论】八皇后问题的算法实现(C、MATLAB、Python版)
八皇后问题是一道经典的回溯问题.问题描述如下:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8*8个方格),使它们谁也不能被吃掉? 看到这个问题,最容易想 ...
- Python 八皇后问题
八皇后问题描述:在一个8✖️8的棋盘上,任意摆放8个棋子,要求任意两个棋子不能在同一行,同一列,同一斜线上,问有多少种解法. 规则分析: 任意两个棋子不能在同一行比较好办,设置一个队列,队列里的每个元 ...
- 【算法】八皇后问题 Python实现
[八皇后问题] 问题: 国际象棋棋盘是8 * 8的方格,每个方格里放一个棋子.皇后这种棋子可以攻击同一行或者同一列或者斜线(左上左下右上右下四个方向)上的棋子.在一个棋盘上如果要放八个皇后,使得她们互 ...
- 带你轻而易举的学习python——八皇后问题
首先我们来看一下这个著名的八皇后问题 八皇后问题:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 在这个问题提出之后人们又将 ...
- Python解决八皇后问题的代码【解读】
八皇后问题 来自于西方象棋(现在叫 国际象棋,英文chess),详情可见百度百科. 在西方象棋中,有一种叫做皇后的棋子,在棋盘上,如果双方的皇后在同一行.同一列或同一斜线上,就会互相攻击. 八皇后问题 ...
- python基础教程总结8——特殊方法,属性,迭代器,生成器,八皇后问题
1. 重写一般方法和特殊的构造方法 1.1 如果一个方法在B类的一个实例中被调用(或一个属性被访问),但在B类中没有找到该方法,那么会去它的超类A里面找. class A: ... def hello ...
随机推荐
- js实现oss文件上传及一些问题
关于兼容性问题,ie8以下的可以使用4.x的版本 一.引入sdk和jq <script src="http://libs.baidu.com/jquery/2.0.0/jquery.m ...
- ElasticSearch实战-编码实践
1.概述 前面在<ElasticSearch实战-入门>中给大家分享如何搭建这样一个集群,在完成集群的搭建后,今天给大家分享如何实现对应的业务功能模块,下面是今天的分享内容,目录如下所示: ...
- 反调试手法之CreateProcess反调试
反调试手法之CreateProcess反调试 在学习Win32 创建进程的时候.我们发现了有一个进程信息结构体. STARTUPINFO. 这个结构体可以实现反调试. 具体CreateProcess可 ...
- win32之进程概念
win32之进程 一丶简介 学习WindowsAPI. 之前.我们必须理解什么是进程. 在windows环境下.进程就是一个运行起来的exe程序 进程提供了数据以及资源. 但是怎么使用不管.而是由线程 ...
- lucene简单搜索demo
方法类 package com.wxf.Test; import com.wxf.pojo.Goods; import org.apache.lucene.analysis.standard.Stan ...
- k8s小工具
1.Kubectx kubectx是一个在多集群和多命名空间的时候使用的非常好用的工具,kubectx与kubens绑定,kubectx用来在集群之间切换,kubens用来切换namespace. # ...
- 图像融合之泊松融合(Possion Matting)
前面有介绍拉普拉斯融合,今天说下OpenCV泊松融合使用.顺便提一下,泊松是拉普拉斯的学生. 泊松融合的原理请参考这篇博文https://blog.csdn.net/u011534057/articl ...
- LINQ 【增、删、改、查】数据绑定
LINQ,语言集成查询(Language Integrated Query) 是一组用于c#和Visual Basic语言的扩展.它允许编写C#或者Visual Basic代码以查询数据库相同的方式操 ...
- sql语句中left join和inner join中的on与where的区别分析
关于SQL SERVER的表联接查询INNER JOIN .LEFT JOIN和RIGHT JOIN,经常会用到ON和WHERE的条件查询,以前用的时候有时是凭感觉的,总是没有搞清楚,今日亲自测试了下 ...
- mac 上运行httpserver的问题
如果你的系统是window 我建议你安装http-server 非常好用, 如果是mac,系统自带的就有httpserver 服务,没有必要在安装 按照我说的来操作 首先 sudo apachectl ...