Learning Deep Architectures for AI By Yoshua Bengio

http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf

https://deeplearning4j.org/restrictedboltzmannmachine

https://stats385.github.io/readings

Neural Network Design 2nd Edtion

http://hagan.okstate.edu/NNDesign.pdf#page=469

Visualizing and Understanding Convolutional Networks

https://arxiv.org/pdf/1311.2901v3.pdf

Why does deep and cheap learning work so well?∗

https://arxiv.org/pdf/1608.08225.pdf

Harmonic Analysis of Neural Networks

https://statweb.stanford.edu/~candes/papers/Harm_Net.pdf

A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction Thomas Wiatowski and Helmut Bo ̈lcskei Dept. IT & EE, ETH Zurich, Switzerland September 2, 2016
https://arxiv.org/pdf/1512.06293.pdf

https://distill.pub/2016/handwriting/

https://www.quora.com/How-far-along-are-we-in-the-understanding-of-why-deep-learning-works

https://medium.com/intuitionmachine/the-holographic-principle-and-deep-learning-52c2d6da8d9

Two good papers on the subject:  Identifying and attacking the saddle point problem in high-dimensional non-convex optimization (NIPS'2014) andThe loss surface of multilayer networks (AISTATS'2015).

http://uschmajew.ins.uni-bonn.de/research/pub/uschmajew/bsu15preprint_rev.pdf

https://www.quora.com/How-does-deep-learning-work-and-how-is-it-different-from-normal-neural-networks-applied-with-SVM-How-does-one-go-about-starting-to-understand-them-papers-blogs-articles

Why does deep and cheap learning work so well?∗

https://arxiv.org/pdf/1608.08225.pdf

https://www.technologyreview.com/s/602344/the-extraordinary-link-between-deep-neural-networks-and-the-nature-of-the-universe/

https://www.quora.com/How-does-deep-learning-work-and-how-is-it-different-from-normal-neural-networks-applied-with-SVM-How-does-one-go-about-starting-to-understand-them-papers-blogs-articles

https://www.quora.com/Why-does-deep-learning-work-so-well-in-the-real-world

http://motls.blogspot.com/2015/03/quantum-gravity-from-quantum-error.html

https://arxiv.org/pdf/1407.6552v2.pdf Advances on Tensor Network Theory: Symmetries, Fermions, Entanglement, and Holography

http://uschmajew.ins.uni-bonn.de/research/pub/uschmajew/bsu15preprint_rev.pdf

https://perimeterinstitute.ca/conferences/quantum-machine-learning

https://arxiv.org/abs/1704.01552v1

[1404.7828] Deep Learning in Neural Networks: An Overview

Richard Socher - Deep Learning Tutorial

Why does deep learning work?的更多相关文章

  1. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Deep Learning 26:读论文“Maxout Networks”——ICML 2013

    论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...

  7. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  8. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

  10. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

随机推荐

  1. Xamarin Essentials教程获取路径文件系统FileSystem

    Xamarin Essentials教程获取路径文件系统FileSystem 文件系统用于管理设备内的各类文件.通过文件系统,应用程序可以创建永久文件和临时文件,也可以获取预先打包的文件,如预设数据库 ...

  2. Web API之service worker

    一.参考链接 https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API http://www.alloyteam.com/ ...

  3. mybatis自动生成mapper和pojo

    1.在resources下新建generatorConfig.xml <?xml version="1.0" encoding="UTF-8"?> ...

  4. RabbitMQ路由模式

    生产者 import com.rabbitmq.client.Channel; import com.rabbitmq.client.Connection; import utils.Connecti ...

  5. $.extends 继承原理

    <script type="text/javascript"> function mixs (){ var arg = arguments; var i = 1; ta ...

  6. 编程菜鸟的日记-初学尝试编程-C++ Primer Plus 第4章编程练习3

    #include <iostream>#include <cstring>using namespace std;int main(){ char fname[20]; cha ...

  7. Python内置GUI模块Tkinter的几点笔记

    组件属性,用法 组件位置 更多

  8. Aizu0121 Seven Puzzle(bfs+康托展开)

    https://vjudge.net/problem/Aizu-0121 比八数码要水的多,bfs. 但是做的时候我把康托展开记错了,wa了好几次. 附上康托展开博客详解:https://blog.c ...

  9. pygame-KidsCanCode系列jumpy-part16-enemy敌人

    接上回继续,这次我们要给游戏加点难度,增加几个随机出现的敌人,玩家碰到敌人后Game Over. 最终效果如下,头上顶个"电风扇"的家伙,就是敌人. 一.先定义敌人类 # 敌人类 ...

  10. ESP8266 NOOS SDK libat.a Functions

    at_baseCmd.o custom_infoat_baseCmd.o at_exeCmdNullat_baseCmd.o at_setupCmdEat_baseCmd.o at_exeCmdRst ...