Learning Deep Architectures for AI By Yoshua Bengio

http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf

https://deeplearning4j.org/restrictedboltzmannmachine

https://stats385.github.io/readings

Neural Network Design 2nd Edtion

http://hagan.okstate.edu/NNDesign.pdf#page=469

Visualizing and Understanding Convolutional Networks

https://arxiv.org/pdf/1311.2901v3.pdf

Why does deep and cheap learning work so well?∗

https://arxiv.org/pdf/1608.08225.pdf

Harmonic Analysis of Neural Networks

https://statweb.stanford.edu/~candes/papers/Harm_Net.pdf

A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction Thomas Wiatowski and Helmut Bo ̈lcskei Dept. IT & EE, ETH Zurich, Switzerland September 2, 2016
https://arxiv.org/pdf/1512.06293.pdf

https://distill.pub/2016/handwriting/

https://www.quora.com/How-far-along-are-we-in-the-understanding-of-why-deep-learning-works

https://medium.com/intuitionmachine/the-holographic-principle-and-deep-learning-52c2d6da8d9

Two good papers on the subject:  Identifying and attacking the saddle point problem in high-dimensional non-convex optimization (NIPS'2014) andThe loss surface of multilayer networks (AISTATS'2015).

http://uschmajew.ins.uni-bonn.de/research/pub/uschmajew/bsu15preprint_rev.pdf

https://www.quora.com/How-does-deep-learning-work-and-how-is-it-different-from-normal-neural-networks-applied-with-SVM-How-does-one-go-about-starting-to-understand-them-papers-blogs-articles

Why does deep and cheap learning work so well?∗

https://arxiv.org/pdf/1608.08225.pdf

https://www.technologyreview.com/s/602344/the-extraordinary-link-between-deep-neural-networks-and-the-nature-of-the-universe/

https://www.quora.com/How-does-deep-learning-work-and-how-is-it-different-from-normal-neural-networks-applied-with-SVM-How-does-one-go-about-starting-to-understand-them-papers-blogs-articles

https://www.quora.com/Why-does-deep-learning-work-so-well-in-the-real-world

http://motls.blogspot.com/2015/03/quantum-gravity-from-quantum-error.html

https://arxiv.org/pdf/1407.6552v2.pdf Advances on Tensor Network Theory: Symmetries, Fermions, Entanglement, and Holography

http://uschmajew.ins.uni-bonn.de/research/pub/uschmajew/bsu15preprint_rev.pdf

https://perimeterinstitute.ca/conferences/quantum-machine-learning

https://arxiv.org/abs/1704.01552v1

[1404.7828] Deep Learning in Neural Networks: An Overview

Richard Socher - Deep Learning Tutorial

Why does deep learning work?的更多相关文章

  1. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Deep Learning 26:读论文“Maxout Networks”——ICML 2013

    论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...

  7. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  8. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

  10. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

随机推荐

  1. ROWNUM = 1 to replace count(*)

    For a long time, I have been using the EXISTS clause to determine if at least one record exists in a ...

  2. 【Excel】将IP按照IP地址(v4)增长序列排序

    Background: Excel列中,有多个net-block, 将这些net-block按照IP地址(v4)自己的大小从小到大排序. Idea: IPv4地址的格式是点分十进制的,也就是说每一个点 ...

  3. [OC] Delegate的使用

    建立两个页面 A 和 B,我们假设他们的文件名为ControllerA,ControllerB 由A页面,点击跳转到B页面.在B页面中,进行一些操作,并得到一个值,并将这个值传回给A页面,并在A页面上 ...

  4. PostgreSQL数组使用

    原文:https://my.oschina.net/Kenyon/blog/133974 1.数组的定义  不一样的维度元素长度定义在数据库中的实际存储都是一样的,数组元素的长度和类型必须要保持一致, ...

  5. [模板][P4238]多项式求逆

    NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...

  6. 【Newtonsoft.Json】自己实现JsonConverter ,精简返回的数据结果

    Newtonsoft.Json的Json数据转换很好用,也提供了很多直接使用的类型

  7. ACPI状态简介

    我们平时对电脑的的待机.休眠.睡眠等等都属于ACPI表示高级配置和电源管理接口(Advanced Configuration and Power Management Interface)范畴. AC ...

  8. 最大流:Dinic算法

    蒟蒻居然今天第一次写网络流 我太弱啦! 最大流问题有很多解法 虽然isap常数巨小 但是连dinic都写挂的本蒟蒻并不会orz 那么我们选用比较好实现的dinic来解决最大流问题 来一段定义:    ...

  9. Flask框架返回值

    Flask中的HTTPResponse def index(): #视图函数 return 'Hello World' #直接return就是返回的字符串 Flask中的Redirect,和djang ...

  10. layer.load的使用

    在ajax请求和回调返回的过程中,我们一般都要用到layer.load这个方法 例如: //loading层 var index = layer.load(1, { shade: [0.1,'#fff ...