https://code.google.com/p/deep-learning-faces/source/browse/trunk/cuda_ut/include/bsxfun.h?r=7&spec=svn7

/*
Copyright (C) 2013 Yichuan Tang.
contact: tang at cs.toronto.edu
http://www.cs.toronto.edu/~tang This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version. This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ #ifndef _BSXFUN_H_
#define _BSXFUN_H_ #include "cu_util.h"
#include "cu_clmatrix.h" /***********************************************************************************************************
* @brief: this function performs a matrix + col. vector operation *
* @param[in]: pA and pOut: nI by nJ matrix
* pB is a column vector nI by 1
* nInJ is the total dimensionality of the matrix pA
*
* @param[out]:
* @topology: assumes a 1D block layout in x direction and covers the entire matrix pA
* @note: assume column-major
* @change:
* @tested:
* @to_do:
***********************************************************************************************************
*/
template<class O, typename T>
__global__ void bsxfun_colvec_1dkernel( const T* pA, const T* pVec, T* pOut,
int nI, int nJ, int nInJ, O op)
{
const unsigned int ind = blockIdx.x*blockDim.x + threadIdx.x;
const unsigned int totalThreads = blockDim.x*gridDim.x; for (int i = ind; i < nInJ; i += totalThreads)
pOut[i] = op(pA[i], pVec[i % nI]);
} /***********************************************************************************************************
* @brief: this function performs a matrix + row. vector operation
* @param[in]: pA and pOut: nI by nJ matrix
* pVec is a row vector 1 by nJ
* nInJ is the total dimensionality of the matrix pA
*
* @param[out]:
* @topology: assumes a 1D block layout in x direction and covers the entire matrix pA
* @note: assume column-major
* @change:
* @tested:
* @to_do:
***********************************************************************************************************
*/
template<class O, typename T>
__global__ void bsxfun_rowvec_1dkernel( const T* pA, const T* pVec, T* pOut,
int nI, int nJ, int nInJ, O op)
{
const unsigned int ind = blockIdx.x*blockDim.x + threadIdx.x;
const unsigned int totalThreads = blockDim.x*gridDim.x; for (int i = ind; i < nInJ; i += totalThreads)
pOut[i] = op(pA[i], pVec[i / nI]);
} //alpha beta version
template<class O, typename T>
__global__ void bsxfun_colvec_1dkernel( T alpha, const T* pA, T beta, const T* pVec, T* pOut,
int nI, int nJ, int nInJ, O op)
{
const unsigned int ind = blockIdx.x*blockDim.x + threadIdx.x;
const unsigned int totalThreads = blockDim.x*gridDim.x; for (int i = ind; i < nInJ; i += totalThreads)
pOut[i] = op(pA[i], alpha, pVec[i % nI], beta);
} template<class O, typename T>
__global__ void bsxfun_rowvec_1dkernel( T alpha, const T * pA, T beta, const T* pVec, T* pOut,
int nI, int nJ, int nInJ, O op)
{
const unsigned int ind = blockIdx.x*blockDim.x + threadIdx.x;
const unsigned int totalThreads = blockDim.x*gridDim.x; for (int i = ind; i < nInJ; i += totalThreads)
pOut[i] = op(pA[i], alpha, pVec[i / nI], beta);
} /***********************************************************************************************************
* @brief: function similar to bsxfun of matlab
* A op B ---> Out
* @param[in]: op - type of operation
* A - first matrix
* B - col/row vector, one dimension must be 1
* @param[out]:
if Out is set to A, the operation is inplace, overwrites A
*
* @topology:
* @note:
* @change:
* @tested:
* @to_do: switch to shared memory operators to see if we can achieve speedup?!
***********************************************************************************************************
*/
template<class O, typename T>
int Bsxfun( const clMatrix<T>& A, O op, const clMatrix<T>& B, clMatrix<T>& Out){ if (! (B.nI == || B.nJ == ) )
return -;
if ( ( B.nI == && B.nJ != A.nJ) || ( B.nJ == && B.nI != A.nI) ){ if (!(B.nI == && B.nJ == )) //special case
return -;
}
if ( A.nI != Out.nI || A.nJ != Out.nJ)
return -; const unsigned int datadim = A.nJ*A.nI;
dim3 dim_block( MEDIUM_NUM_THREADS );
dim3 dim_grid( MIN( MAX_GRIDS, (datadim + dim_block.x-)/dim_block.x) ); if (B.nJ == && B.nI != ){
bsxfun_colvec_1dkernel<<<dim_grid, dim_block>>>( A.pData, B.pData, Out.pData,
A.nI, A.nJ, datadim, op);
}else if (B.nJ != && B.nI == ){
bsxfun_rowvec_1dkernel<<<dim_grid, dim_block>>>( A.pData, B.pData, Out.pData,
A.nI, A.nJ, datadim, op );
}else{ // when B is 1x1
if (A.nI == ){
bsxfun_colvec_1dkernel<<<dim_grid, dim_block>>>( A.pData, B.pData, Out.pData,
A.nI, A.nJ, datadim, op);
}else if (A.nJ == ){
bsxfun_rowvec_1dkernel<<<dim_grid, dim_block>>>( A.pData, B.pData, Out.pData,
A.nI, A.nJ, datadim, op );
}else{
return -; //invalid case
} }
return ;
} //alpha beta version
template<class O, typename T>
int Bsxfun(T alpha, const clMatrix<T>& A, O op, T beta, const clMatrix<T>& B, clMatrix<T>& Out){ if (! (B.nI == || B.nJ == ) )
return -;
if ( ( B.nI == && B.nJ != A.nJ) || ( B.nJ == && B.nI != A.nI) ){ if (!(B.nI == && B.nJ == )) //special case
return -;
}
if ( A.nI != Out.nI || A.nJ != Out.nJ)
return -; const uint64_t datadim = A.nJ*A.nI;
dim3 dim_block( MEDIUM_NUM_THREADS );
dim3 dim_grid( MIN( MAX_GRIDS, (datadim + dim_block.x-)/dim_block.x) ); if (B.nJ == && B.nI != ){
bsxfun_colvec_1dkernel<<<dim_grid, dim_block>>>( alpha, A.pData, beta, B.pData, Out.pData,
A.nI, A.nJ, datadim, op);
}else if (B.nJ != && B.nI == ){
bsxfun_rowvec_1dkernel<<<dim_grid, dim_block>>>( alpha, A.pData, beta, B.pData, Out.pData,
A.nI, A.nJ, datadim, op );
}else{
if (A.nI == ){
bsxfun_colvec_1dkernel<<<dim_grid, dim_block>>>(alpha, A.pData, beta, B.pData, Out.pData,
A.nI, A.nJ, datadim, op);
}else if (A.nJ == ){
bsxfun_rowvec_1dkernel<<<dim_grid, dim_block>>>(alpha, A.pData, beta, B.pData, Out.pData,
A.nI, A.nJ, datadim, op );
}else{
return -; //invalid case
} } return ;
} #endif

bsxfun.h multiple threads backup的更多相关文章

  1. caffe网络在多线程中无法使用GPU的解决方案 | cpp caffe net run in multiple threads

    本文首发于个人博客https://kezunlin.me/post/8d877e63/,欢迎阅读! cpp caffe net run in multiple threads Guide set_mo ...

  2. Multiple Threads reading from the same file(转载)

    问 I have a xml file that needs to be read from many many times. I am trying to use the Parallel.ForE ...

  3. Android 性能优化(16)线程优化:Creating a Manager for Multiple Threads 如何创建一个线程池管理类

    Creating a Manager for Multiple Threads 1.You should also read Processes and Threads The previous le ...

  4. 临界区代码 critical section Locks and critical sections in multiple threads

    临界区 在同步的程序设计中,临界区段(Critical section)指的是一个访问共享资源(例如:共享设备或是共享存储器)的程序片段,而这些共享资源有无法同时被多个线程访问的特性. 当有线程进入临 ...

  5. SQLite multiple threads

    const int loops = 1000; public void DatabaseThreadSafetyTest() { var backgroundThread = new Thread(n ...

  6. Hashtable insert failed. Load factor too high. The most common cause is multiple threads writing to the Hashtable simultaneously

    暂时也没准确定位到问题 https://support.microsoft.com/zh-cn/help/2803754/hotfix-rollup-2803754-is-available-for- ...

  7. PatentTips - Controlling TSC offsets for multiple cores and threads

    BACKGROUND Many processors include a time stamp count (TSC) counter which is typically implemented a ...

  8. Libevent源码学习笔记一:event2/event.h

    一.libevent标准使用方法: 每个程序使用Libevent必须include <event2/event.h> 头文件,并 传给 -levent  链接器.如果只是想使用主要的eve ...

  9. OpenMPI源码剖析4:rte.h 头文件的说明信息

    上一篇文章中说道,我们在 rte.h 中发现了有价值的说明: 我们一块一块来分析,首先看到第一块,关于 Process name Object: * (a) Process name objects ...

随机推荐

  1. Numpy float64和Python float是一样的

    >>> numpy.float64(5.9975).hex() # 函数用于将10进制整数转换成16进制,以字符串形式表示. '0x1.7fd70a3d70a3dp+2' >& ...

  2. 【JVM】-NO.110.JVM.1 -【JDK11 HashMap详解】

    Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...

  3. openshift 容器云从入门到崩溃之七《数据持久化》

    数据持久化常用的有两种: hostPath 挂载容器宿主机的本地文件夹,直接修改pod的配置 volumes: - hostPath: path: /data/logging-es type: '' ...

  4. JMeter上架标的(yyb-csg)

    yyb-csg 1.登录时一直提示用户名不能为空,可是明明已经传值了呀 解决:添加cookie管理器 2.怎么获取到待受理的项目, 在python脚本的实现过程中发现,在平台受理一步中传的lid值就是 ...

  5. sitecore开发入门之Sitecore字典结构最佳实践

    使用Sitecore时,一个重要的主题是如何为您的网站处理不同的语言和区域.Sitecore对此的回答是使用字典项,它基本上只代表键/值定义.但是,这个字典项可以设置为具有不同的语言版本,这几乎允许您 ...

  6. nodejs笔记之初识node

    1.安装node; node -v  //检测node是否安装成功 node可以做什么: 搭建服务器: 读写文件: 连接数据库: 爬虫: node的模块系统: 原生模块(如http,fs); 自定义模 ...

  7. G711 G723 G729线路占多少带宽问题

    G.711   G.711   也称为PCM(脉冲编码调制),是国际电信联盟订定出来的一套语音压缩标准,主要用于电话.它主要用脉冲编码调制对音频采样,采样率为8k每秒.它利用一个 64Kbps 未压缩 ...

  8. Hadoop Streaming 使用及参数设置

    http://www.cnblogs.com/hopelee/p/7476145.html https://blog.csdn.net/djy37010/article/details/5505103 ...

  9. 基于 arduino 的低功耗无线传感结点设计

    发送端 仿真图: *仿真图中使用使用TMP传感器(LM34)代替实际使用的DHT11传感器. 连接方式: DHT11的正极(VCC)与5V电源接口连接 DHT11的负极(GND)与GND连接 DHT1 ...

  10. Anaconda部署python环境

    Anaconda安装 首先进入到anaconda的官网,如下图所示,会看到anaconda的下载页面: 2.下拉或者单击图中的Windows选项,得到如下图所示的界面,此时可以根据自己需要的版本进行相 ...