2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)
BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among the vertices, of them are red, while the others are black. The root of the tree is vertex 1 and it's a red vertex.
Let's define the cost of a red vertex to be 0, and the cost of a black vertex to be the distance between this vertex and its nearest red ancestor.
Recall that
The length of a path on the tree is the sum of the weights of the edges in this path.
The distance between two vertices is the length of the shortest path on the tree to go from one vertex to the other.
Vertex is the ancestor of vertex v if it lies on the shortest path between vertex and the root of the tree (which is vertex 1 in this problem).
As BaoBao is bored, he decides to play q games with the tree. For the i-th game, BaoBao will select ki vertices v1,1,vi,2,...,vi,ki on the tree and try to minimize the maximum cost of these ki vertices by changing at most one vertex on the tree to a red vertex.
Note that
BaoBao is free to change any n vertex among all the vertices to a red vertex, NOT necessary among the ki vertiecs whose maximum cost he tries to minimize.
All the q games are independent. That is to say, the tree BaoBao plays with in each game is always the initial given tree, NOT the tree modified during the last game by changing at most one vertex.
Please help BaoBao calculate the smallest possible maximum cost of the given ki vertices in each game after changing at most one vertex to a red vertex.
Input
There are multiple test cases. The first line of the input is an integer T, indicating the number of test cases. For each test case:
The first line contains three integers n,m and q (2≤m≤n≤105,1≤q≤2×105), indicating the size of the tree, the number of red vertices and the number of games.
The second line contains m integers r1,r2,...,rm (1=r1<r2<...<rm≤n), indicating the red vertices.
The following (n-1) lines each contains three integers ui,vi and wi (1≤ui,vi≤n,1≤wi≤109 ), indicating an edge with wi weight connecting vertex ui and vi in the tree.
For the following q lines, the i-th line will first contain an integer ki(1≤ki≤n). Then ki integers vi,1,vi,2,...viki follow (1≤vi,1<vi,2<...<viki≤n), indicating the vertices whose maximum cost BaoBao has to minimize.
It's guaranteed that the sum of in all test cases will not exceed , and the sum of in all test cases will not exceed .
Output
For each test case output q lines each containing one integer, indicating the smallest possible maximum cost of the ki vertices given in each game after changing at most one vertex in the tree to a red vertex.
Sample Input
2
12 2 4
1 9
1 2 1
2 3 4
3 4 3
3 5 2
2 6 2
6 7 1
6 8 2
2 9 5
9 10 2
9 11 3
1 12 10
3 3 7 8
4 4 5 7 8
4 7 8 10 11
3 4 5 12
3 2 3
1 2
1 2 1
1 3 1
1 1
2 1 2
3 1 2 3
Sample Output
4
5
3
8
0
0
0
Hint
The first sample test case is shown above. Let's denote C(v) as the cost of vertex v .
For the 1st game, the best choice is to make vertex 2 red, so that C(3)=4,C(7)=3 and C(8)=4. So the answer is 4.
For the 2nd game, the best choice is to make vertex 3 red, so that C(4)=3,C(5)=2,C(7)=4 and C(8)=5. So the answer is 5.
For the 3rd game, the best choice is to make vertex 6 red, so that C(7)=1,C(8)=2,C(10)=2 and C(11)=3. So the answer is 3.
For the 4th game, the best choice is to make vertex 12 red, so that C(4)=8,C(5)=7 and C(12)=0. So the answer is 8.
Due to the design restrictions of ZOJ, we can only provide a subset of the testing data here (the original data is too large for ZOJ to store). We will update the testing data once we update ZOJ. Sorry for the inconvenience caused.
题意
给出一棵树,其中某些点是红色,其余点是黑色。定义一个点的花费为这个点到距其最近的红色祖先节点的距离。q次查询,每次查询给出k个节点,允许将最多一个黑色点变为红色, 求这k个点中最大花费的最小值。每次查询相互独立,不影响树的初始结构。
题解
dfs处理出每个点距离1点的距离D,每个点距离红色祖先的距离dis
倍增lca预处理,用于查询公共祖先
每个查询q
先将k个点按dis从大到小排序
每次处理第i个节点
1.找到和前一个点的公共祖先
2.如果深度<上一个深度,说明然红的点在上面,需要把前面的最大值+这一段距离
3.然后当前节点本身的dis和把公共祖先染红的新距离取最小
4.2,3操作得到的值取max
5.4操作得到的max和下一个点的dis取max再整体取min,因为有可能节点操作后值变小了,使得最大值为下一个节点
代码
#include<bits/stdc++.h>
using namespace std; #define fi first
#define se second
#define LL long long const int maxn=1e5+;
const int INF=0x3f3f3f3f; int R[maxn],cnt[maxn],fa[maxn][],deep[maxn],n,m;
LL D[maxn],dis[maxn];
bool red[maxn];
vector< pair<int,int> >G[maxn]; void dfs(int x,int f)
{
if(red[x])R[x]=x;
else R[x]=R[f];
dis[x]=D[x]-D[R[x]];
for(auto v:G[x])
{
if(v.fi==f)continue;
D[v.fi]=D[x]+v.se;
deep[v.fi]=deep[x]+;
fa[v.fi][]=x;
dfs(v.fi,x);
}
}
bool cmp(LL a,LL b)
{
return dis[a]>dis[b];
}
void RMQ()
{
for(int j=;(<<j)<=n;j++)
for(int i=;i<=n;i++)
fa[i][j]=fa[fa[i][j-]][j-];
}
int LCA(int u,int v)
{
if(deep[u]<deep[v])swap(u,v);
int de=log(deep[u])/log(2.0);
for(int i=de;i>=;i--)
if(deep[u]-(<<i)>=deep[v])
u=fa[u][i];
if(v==u)return u;
for(int i=de;i>=;i--)
if(fa[u][i]!=fa[v][i])
u=fa[u][i],v=fa[v][i];
return fa[v][];
}
int main()
{
int t,q,a,b,c,k;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&q);
for(int i=;i<=n;i++)
red[i]=,G[i].clear();
for(int i=;i<=m;i++)
scanf("%d",&a),red[a]=;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
G[a].push_back(make_pair(b,c));
G[b].push_back(make_pair(a,c));
}
D[]=dis[]=dis[n+]=;
dfs(,);
RMQ();
while(q--)
{
scanf("%d",&k);
LL ans=,maxx=,lon;
for(int i=;i<k;i++)
scanf("%d",&cnt[i]);
cnt[k]=n+;
sort(cnt,cnt+k,cmp);
int far=cnt[];
ans=min(dis[cnt[]],dis[cnt[]]);
for(int i=;i<k;i++)
{
int mom=LCA(far,cnt[i]);//找上一个和当前的公共祖先,染红mom节点
if(deep[mom]<deep[far])maxx+=D[far]-D[mom];//如果新祖先深度<上一个祖先深度,最大的距离需要+两个祖先之间的距离
lon=min(dis[cnt[i]],D[cnt[i]]-D[mom]);//当前节点本身距离红色祖先的距离和把到mom染红后的节点距离取min
maxx=max(lon,maxx);
far=mom;
ans=min(ans,max(maxx,dis[cnt[i+]]));//保证每次处理最大值
}
printf("%lld\n",ans);
}
}
return ;
}
2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)的更多相关文章
- 2018 icpc 青岛网络赛 J.Press the Button
Press the Button Time Limit: 1 Second Memory Limit: 131072 KB BaoBao and DreamGrid are playing ...
- 2018 ICPC 沈阳网络赛
2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...
- 2018 ICPC 徐州网络赛
2018 ICPC 徐州网络赛 A. Hard to prepare 题目描述:\(n\)个数围成一个环,每个数是\(0\)~\(2^k-1\),相邻两个数的同或值不为零,问方案数. solution ...
- 2018 ICPC 焦作网络赛 E.Jiu Yuan Wants to Eat
题意:四个操作,区间加,区间每个数乘,区间的数变成 2^64-1-x,求区间和. 题解:2^64-1-x=(2^64-1)-x 因为模数为2^64,-x%2^64=-1*x%2^64 由负数取模的性质 ...
- 2018 ICPC南京网络赛 L Magical Girl Haze 题解
大致题意: 给定一个n个点m条边的图,在可以把路径上至多k条边的权值变为0的情况下,求S到T的最短路. 数据规模: N≤100000,M≤200000,K≤10 建一个立体的图,有k层,每一层是一份原 ...
- 2018 icpc 徐州网络赛 F Features Track
这个题,我也没想过我这样直接就过了 #include<bits/stdc++.h> using namespace std; ; typedef pair<int,int> p ...
- 2018 ACM-ICPC 青岛网络赛
最近打比赛不知道为什么总是怀疑自己 写完之后不敢交,一定跟学长说一遍自己的思路 然后发现"哦原来我是对的" 然后就A掉了…… 所以还是要有自信 Problem A 最大值直接输出m ...
- 【2018 ICPC焦作网络赛 K】Transport Ship(多重背包二进制优化)
There are N different kinds of transport ships on the port. The ith kind of ship can carry the weigh ...
- 【2018 ICPC焦作网络赛 G】Give Candies(费马小定理+快速幂取模)
There are N children in kindergarten. Miss Li bought them N candies. To make the process more intere ...
随机推荐
- [转] Linux运维常见故障排查和处理的技巧汇总
作为linux运维,多多少少会碰见这样那样的问题或故障,从中总结经验,查找问题,汇总并分析故障的原因,这是一个Linux运维工程师良好的习惯.每一次技术的突破,都经历着苦闷,伴随着快乐,可我们还是执着 ...
- [Java] Thread -- 避免Race Condition (Synchronized)
public class TestRaceCondition implements Runnable{ public static int counter = 0; public static voi ...
- windows openssh 设置root 目录
默认windows openssh 服务的root 目录是用户账户所在的目录(一般是administrator),但是我们可以通过修改sshd_config 重新修改路径 可选的修改方式 直接修改ss ...
- sqluldr2 学习心得
前言 最近正在做一个项目,需要导出数据库中的表,单数数据库中有很多带有虚拟列的表,而且表中的数据非常的庞大,有些表中的数据上亿条,项目经理让我研究如何快速导出这些数据. 下面是我研究的一些经历: (1 ...
- R随机森林交叉验证 + 进度条
library(data.table) library(randomForest) data <- iris str(data) #交叉验证,使用rf预测sepal.length k = 5 d ...
- 解决 windows下安装Anaconda后python pip不可用的情况
在windows系统下通过安装Anaconda的方式安装的python使用中发现不能再通过pip安装python包.只能通过conda install packname 的方法,导致很多conda不支 ...
- JVMj机制
- py-day2-4 python 集合
# 集合是由 { ,} 组成 test = {1,2,8,9,7,5} print(test) {1, 2, 5, 7, 8, 9} # 集合的结果是 去重的,且排序是 无序的 test = {1,2 ...
- [转]vs2010用 boost.python 编译c++类库 供python调用
转自:http://blog.csdn.net/wyljz/article/details/6307952 VS2010建立一个空的DLL 项目属性中配置如下 链接器里的附加库目录加入,python/ ...
- 分享一个生成反遗忘复习计划的java程序
想必这个曲线大家都认识,这是遗忘曲线,展示人的记忆会随着时间的延长慢慢遗忘的规律,同时还展示了如果我们过一段时间复习一次对遗忘的有利影响. 道理大家都懂,关键怎么做到? 靠在本子上记下今天我该复习哪一 ...