2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)
BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among the vertices, of them are red, while the others are black. The root of the tree is vertex 1 and it's a red vertex.
Let's define the cost of a red vertex to be 0, and the cost of a black vertex to be the distance between this vertex and its nearest red ancestor.
Recall that
The length of a path on the tree is the sum of the weights of the edges in this path.
The distance between two vertices is the length of the shortest path on the tree to go from one vertex to the other.
Vertex is the ancestor of vertex v if it lies on the shortest path between vertex and the root of the tree (which is vertex 1 in this problem).
As BaoBao is bored, he decides to play q games with the tree. For the i-th game, BaoBao will select ki vertices v1,1,vi,2,...,vi,ki on the tree and try to minimize the maximum cost of these ki vertices by changing at most one vertex on the tree to a red vertex.
Note that
BaoBao is free to change any n vertex among all the vertices to a red vertex, NOT necessary among the ki vertiecs whose maximum cost he tries to minimize.
All the q games are independent. That is to say, the tree BaoBao plays with in each game is always the initial given tree, NOT the tree modified during the last game by changing at most one vertex.
Please help BaoBao calculate the smallest possible maximum cost of the given ki vertices in each game after changing at most one vertex to a red vertex.
Input
There are multiple test cases. The first line of the input is an integer T, indicating the number of test cases. For each test case:
The first line contains three integers n,m and q (2≤m≤n≤105,1≤q≤2×105), indicating the size of the tree, the number of red vertices and the number of games.
The second line contains m integers r1,r2,...,rm (1=r1<r2<...<rm≤n), indicating the red vertices.
The following (n-1) lines each contains three integers ui,vi and wi (1≤ui,vi≤n,1≤wi≤109 ), indicating an edge with wi weight connecting vertex ui and vi in the tree.
For the following q lines, the i-th line will first contain an integer ki(1≤ki≤n). Then ki integers vi,1,vi,2,...viki follow (1≤vi,1<vi,2<...<viki≤n), indicating the vertices whose maximum cost BaoBao has to minimize.
It's guaranteed that the sum of in all test cases will not exceed , and the sum of in all test cases will not exceed .
Output
For each test case output q lines each containing one integer, indicating the smallest possible maximum cost of the ki vertices given in each game after changing at most one vertex in the tree to a red vertex.
Sample Input
2
12 2 4
1 9
1 2 1
2 3 4
3 4 3
3 5 2
2 6 2
6 7 1
6 8 2
2 9 5
9 10 2
9 11 3
1 12 10
3 3 7 8
4 4 5 7 8
4 7 8 10 11
3 4 5 12
3 2 3
1 2
1 2 1
1 3 1
1 1
2 1 2
3 1 2 3
Sample Output
4
5
3
8
0
0
0
Hint

The first sample test case is shown above. Let's denote C(v) as the cost of vertex v .
For the 1st game, the best choice is to make vertex 2 red, so that C(3)=4,C(7)=3 and C(8)=4. So the answer is 4.
For the 2nd game, the best choice is to make vertex 3 red, so that C(4)=3,C(5)=2,C(7)=4 and C(8)=5. So the answer is 5.
For the 3rd game, the best choice is to make vertex 6 red, so that C(7)=1,C(8)=2,C(10)=2 and C(11)=3. So the answer is 3.
For the 4th game, the best choice is to make vertex 12 red, so that C(4)=8,C(5)=7 and C(12)=0. So the answer is 8.
Due to the design restrictions of ZOJ, we can only provide a subset of the testing data here (the original data is too large for ZOJ to store). We will update the testing data once we update ZOJ. Sorry for the inconvenience caused.
题意
给出一棵树,其中某些点是红色,其余点是黑色。定义一个点的花费为这个点到距其最近的红色祖先节点的距离。q次查询,每次查询给出k个节点,允许将最多一个黑色点变为红色, 求这k个点中最大花费的最小值。每次查询相互独立,不影响树的初始结构。
题解
dfs处理出每个点距离1点的距离D,每个点距离红色祖先的距离dis
倍增lca预处理,用于查询公共祖先
每个查询q
先将k个点按dis从大到小排序
每次处理第i个节点
1.找到和前一个点的公共祖先
2.如果深度<上一个深度,说明然红的点在上面,需要把前面的最大值+这一段距离
3.然后当前节点本身的dis和把公共祖先染红的新距离取最小
4.2,3操作得到的值取max
5.4操作得到的max和下一个点的dis取max再整体取min,因为有可能节点操作后值变小了,使得最大值为下一个节点
代码
#include<bits/stdc++.h>
using namespace std; #define fi first
#define se second
#define LL long long const int maxn=1e5+;
const int INF=0x3f3f3f3f; int R[maxn],cnt[maxn],fa[maxn][],deep[maxn],n,m;
LL D[maxn],dis[maxn];
bool red[maxn];
vector< pair<int,int> >G[maxn]; void dfs(int x,int f)
{
if(red[x])R[x]=x;
else R[x]=R[f];
dis[x]=D[x]-D[R[x]];
for(auto v:G[x])
{
if(v.fi==f)continue;
D[v.fi]=D[x]+v.se;
deep[v.fi]=deep[x]+;
fa[v.fi][]=x;
dfs(v.fi,x);
}
}
bool cmp(LL a,LL b)
{
return dis[a]>dis[b];
}
void RMQ()
{
for(int j=;(<<j)<=n;j++)
for(int i=;i<=n;i++)
fa[i][j]=fa[fa[i][j-]][j-];
}
int LCA(int u,int v)
{
if(deep[u]<deep[v])swap(u,v);
int de=log(deep[u])/log(2.0);
for(int i=de;i>=;i--)
if(deep[u]-(<<i)>=deep[v])
u=fa[u][i];
if(v==u)return u;
for(int i=de;i>=;i--)
if(fa[u][i]!=fa[v][i])
u=fa[u][i],v=fa[v][i];
return fa[v][];
}
int main()
{
int t,q,a,b,c,k;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&q);
for(int i=;i<=n;i++)
red[i]=,G[i].clear();
for(int i=;i<=m;i++)
scanf("%d",&a),red[a]=;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
G[a].push_back(make_pair(b,c));
G[b].push_back(make_pair(a,c));
}
D[]=dis[]=dis[n+]=;
dfs(,);
RMQ();
while(q--)
{
scanf("%d",&k);
LL ans=,maxx=,lon;
for(int i=;i<k;i++)
scanf("%d",&cnt[i]);
cnt[k]=n+;
sort(cnt,cnt+k,cmp);
int far=cnt[];
ans=min(dis[cnt[]],dis[cnt[]]);
for(int i=;i<k;i++)
{
int mom=LCA(far,cnt[i]);//找上一个和当前的公共祖先,染红mom节点
if(deep[mom]<deep[far])maxx+=D[far]-D[mom];//如果新祖先深度<上一个祖先深度,最大的距离需要+两个祖先之间的距离
lon=min(dis[cnt[i]],D[cnt[i]]-D[mom]);//当前节点本身距离红色祖先的距离和把到mom染红后的节点距离取min
maxx=max(lon,maxx);
far=mom;
ans=min(ans,max(maxx,dis[cnt[i+]]));//保证每次处理最大值
}
printf("%lld\n",ans);
}
}
return ;
}
2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)的更多相关文章
- 2018 icpc 青岛网络赛 J.Press the Button
Press the Button Time Limit: 1 Second Memory Limit: 131072 KB BaoBao and DreamGrid are playing ...
- 2018 ICPC 沈阳网络赛
2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...
- 2018 ICPC 徐州网络赛
2018 ICPC 徐州网络赛 A. Hard to prepare 题目描述:\(n\)个数围成一个环,每个数是\(0\)~\(2^k-1\),相邻两个数的同或值不为零,问方案数. solution ...
- 2018 ICPC 焦作网络赛 E.Jiu Yuan Wants to Eat
题意:四个操作,区间加,区间每个数乘,区间的数变成 2^64-1-x,求区间和. 题解:2^64-1-x=(2^64-1)-x 因为模数为2^64,-x%2^64=-1*x%2^64 由负数取模的性质 ...
- 2018 ICPC南京网络赛 L Magical Girl Haze 题解
大致题意: 给定一个n个点m条边的图,在可以把路径上至多k条边的权值变为0的情况下,求S到T的最短路. 数据规模: N≤100000,M≤200000,K≤10 建一个立体的图,有k层,每一层是一份原 ...
- 2018 icpc 徐州网络赛 F Features Track
这个题,我也没想过我这样直接就过了 #include<bits/stdc++.h> using namespace std; ; typedef pair<int,int> p ...
- 2018 ACM-ICPC 青岛网络赛
最近打比赛不知道为什么总是怀疑自己 写完之后不敢交,一定跟学长说一遍自己的思路 然后发现"哦原来我是对的" 然后就A掉了…… 所以还是要有自信 Problem A 最大值直接输出m ...
- 【2018 ICPC焦作网络赛 K】Transport Ship(多重背包二进制优化)
There are N different kinds of transport ships on the port. The ith kind of ship can carry the weigh ...
- 【2018 ICPC焦作网络赛 G】Give Candies(费马小定理+快速幂取模)
There are N children in kindergarten. Miss Li bought them N candies. To make the process more intere ...
随机推荐
- 编译Linux-4.15.1内核时遇到:“error : openssl/bio.h :No such file or folder”
如题: scripts/extract-cert.c::: fatal error: openssl/bio.h: No such file or directory compilation term ...
- 深入学习Motan系列(三)——服务发布
袋鼠回头看了看文章,有些啰嗦,争取语音简练,不断提高表达力!袋鼠奋起直追! 注:此篇文章,暂时为了以后时间线排序的需要,暂时发表出来,可是仍然有许多地方需要改写.自己打算把服务端发布,客户端订阅都搞定 ...
- 搭建简单的FTP服务器
客户端部分主要使用C#提供的webclient类 (https://msdn.microsoft.com/library/system.net.webclient.aspx) 通过WebClient. ...
- jsp案例--展示数据库中的数据
一.什么是jsp? JAVA SERVER PAGES java的动态网页,servlet用来获取数据处理业务,擅长处理与java代码有关的内容.jsp展示数据,擅长处理与html有关的内容. 二.如 ...
- C# 左右补零
//不够4位补零 public static string addZero(int val) { string str = val + ""; int strLen = str.L ...
- DBLinq (MySQL exactly) Linq To MySql(转)
Linq to SQL很好用,可惜只支持Microsoft SQL Server 和Microsoft SQL Server Compact Edition,目前比较成熟的免费解决方法是DBLinq( ...
- 单因素方差分析的SAS实现
实验内容:某城市从4个排污口取水,进行某种处理后检测大肠杆菌数量,单位面积内菌落数如下表所示,请分析各个排污口的大肠杆菌数量是否有差别. 排污口 1 2 3 4 大肠杆菌数量 9,12,7,5 20, ...
- 树莓派apt-get The value '\stable' is invalid for APT 错误
对apt-get进行任何操作都会报错: pi@raspberrypi:~ $ sudo apt-get upgrade Reading package lists... Done E: The val ...
- .net 调用 Matlab生成dll出现的问题(The type initializer for 'MathWorks.MATLAB.NET.Utility.MWMCR' threw an exception.)
https://cn.mathworks.com/matlabcentral/answers/278399-i-get-an-error-saying-the-type-initializer-for ...
- django之用户表的继承
有这样一个场景,之前已经设计好了用户的信息表,但是再设计另外一个业务表的时候,信息有点重复,如何重新设计呢? 可以采用表的继承,让一个表作为基类,业务表就可以继承它 要注意以下几点 1 作为基类的表使 ...