2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)
BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among the vertices, of them are red, while the others are black. The root of the tree is vertex 1 and it's a red vertex.
Let's define the cost of a red vertex to be 0, and the cost of a black vertex to be the distance between this vertex and its nearest red ancestor.
Recall that
The length of a path on the tree is the sum of the weights of the edges in this path.
The distance between two vertices is the length of the shortest path on the tree to go from one vertex to the other.
Vertex is the ancestor of vertex v if it lies on the shortest path between vertex and the root of the tree (which is vertex 1 in this problem).
As BaoBao is bored, he decides to play q games with the tree. For the i-th game, BaoBao will select ki vertices v1,1,vi,2,...,vi,ki on the tree and try to minimize the maximum cost of these ki vertices by changing at most one vertex on the tree to a red vertex.
Note that
BaoBao is free to change any n vertex among all the vertices to a red vertex, NOT necessary among the ki vertiecs whose maximum cost he tries to minimize.
All the q games are independent. That is to say, the tree BaoBao plays with in each game is always the initial given tree, NOT the tree modified during the last game by changing at most one vertex.
Please help BaoBao calculate the smallest possible maximum cost of the given ki vertices in each game after changing at most one vertex to a red vertex.
Input
There are multiple test cases. The first line of the input is an integer T, indicating the number of test cases. For each test case:
The first line contains three integers n,m and q (2≤m≤n≤105,1≤q≤2×105), indicating the size of the tree, the number of red vertices and the number of games.
The second line contains m integers r1,r2,...,rm (1=r1<r2<...<rm≤n), indicating the red vertices.
The following (n-1) lines each contains three integers ui,vi and wi (1≤ui,vi≤n,1≤wi≤109 ), indicating an edge with wi weight connecting vertex ui and vi in the tree.
For the following q lines, the i-th line will first contain an integer ki(1≤ki≤n). Then ki integers vi,1,vi,2,...viki follow (1≤vi,1<vi,2<...<viki≤n), indicating the vertices whose maximum cost BaoBao has to minimize.
It's guaranteed that the sum of in all test cases will not exceed , and the sum of in all test cases will not exceed .
Output
For each test case output q lines each containing one integer, indicating the smallest possible maximum cost of the ki vertices given in each game after changing at most one vertex in the tree to a red vertex.
Sample Input
2
12 2 4
1 9
1 2 1
2 3 4
3 4 3
3 5 2
2 6 2
6 7 1
6 8 2
2 9 5
9 10 2
9 11 3
1 12 10
3 3 7 8
4 4 5 7 8
4 7 8 10 11
3 4 5 12
3 2 3
1 2
1 2 1
1 3 1
1 1
2 1 2
3 1 2 3
Sample Output
4
5
3
8
0
0
0
Hint

The first sample test case is shown above. Let's denote C(v) as the cost of vertex v .
For the 1st game, the best choice is to make vertex 2 red, so that C(3)=4,C(7)=3 and C(8)=4. So the answer is 4.
For the 2nd game, the best choice is to make vertex 3 red, so that C(4)=3,C(5)=2,C(7)=4 and C(8)=5. So the answer is 5.
For the 3rd game, the best choice is to make vertex 6 red, so that C(7)=1,C(8)=2,C(10)=2 and C(11)=3. So the answer is 3.
For the 4th game, the best choice is to make vertex 12 red, so that C(4)=8,C(5)=7 and C(12)=0. So the answer is 8.
Due to the design restrictions of ZOJ, we can only provide a subset of the testing data here (the original data is too large for ZOJ to store). We will update the testing data once we update ZOJ. Sorry for the inconvenience caused.
题意
给出一棵树,其中某些点是红色,其余点是黑色。定义一个点的花费为这个点到距其最近的红色祖先节点的距离。q次查询,每次查询给出k个节点,允许将最多一个黑色点变为红色, 求这k个点中最大花费的最小值。每次查询相互独立,不影响树的初始结构。
题解
dfs处理出每个点距离1点的距离D,每个点距离红色祖先的距离dis
倍增lca预处理,用于查询公共祖先
每个查询q
先将k个点按dis从大到小排序
每次处理第i个节点
1.找到和前一个点的公共祖先
2.如果深度<上一个深度,说明然红的点在上面,需要把前面的最大值+这一段距离
3.然后当前节点本身的dis和把公共祖先染红的新距离取最小
4.2,3操作得到的值取max
5.4操作得到的max和下一个点的dis取max再整体取min,因为有可能节点操作后值变小了,使得最大值为下一个节点
代码
#include<bits/stdc++.h>
using namespace std; #define fi first
#define se second
#define LL long long const int maxn=1e5+;
const int INF=0x3f3f3f3f; int R[maxn],cnt[maxn],fa[maxn][],deep[maxn],n,m;
LL D[maxn],dis[maxn];
bool red[maxn];
vector< pair<int,int> >G[maxn]; void dfs(int x,int f)
{
if(red[x])R[x]=x;
else R[x]=R[f];
dis[x]=D[x]-D[R[x]];
for(auto v:G[x])
{
if(v.fi==f)continue;
D[v.fi]=D[x]+v.se;
deep[v.fi]=deep[x]+;
fa[v.fi][]=x;
dfs(v.fi,x);
}
}
bool cmp(LL a,LL b)
{
return dis[a]>dis[b];
}
void RMQ()
{
for(int j=;(<<j)<=n;j++)
for(int i=;i<=n;i++)
fa[i][j]=fa[fa[i][j-]][j-];
}
int LCA(int u,int v)
{
if(deep[u]<deep[v])swap(u,v);
int de=log(deep[u])/log(2.0);
for(int i=de;i>=;i--)
if(deep[u]-(<<i)>=deep[v])
u=fa[u][i];
if(v==u)return u;
for(int i=de;i>=;i--)
if(fa[u][i]!=fa[v][i])
u=fa[u][i],v=fa[v][i];
return fa[v][];
}
int main()
{
int t,q,a,b,c,k;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&q);
for(int i=;i<=n;i++)
red[i]=,G[i].clear();
for(int i=;i<=m;i++)
scanf("%d",&a),red[a]=;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
G[a].push_back(make_pair(b,c));
G[b].push_back(make_pair(a,c));
}
D[]=dis[]=dis[n+]=;
dfs(,);
RMQ();
while(q--)
{
scanf("%d",&k);
LL ans=,maxx=,lon;
for(int i=;i<k;i++)
scanf("%d",&cnt[i]);
cnt[k]=n+;
sort(cnt,cnt+k,cmp);
int far=cnt[];
ans=min(dis[cnt[]],dis[cnt[]]);
for(int i=;i<k;i++)
{
int mom=LCA(far,cnt[i]);//找上一个和当前的公共祖先,染红mom节点
if(deep[mom]<deep[far])maxx+=D[far]-D[mom];//如果新祖先深度<上一个祖先深度,最大的距离需要+两个祖先之间的距离
lon=min(dis[cnt[i]],D[cnt[i]]-D[mom]);//当前节点本身距离红色祖先的距离和把到mom染红后的节点距离取min
maxx=max(lon,maxx);
far=mom;
ans=min(ans,max(maxx,dis[cnt[i+]]));//保证每次处理最大值
}
printf("%lld\n",ans);
}
}
return ;
}
2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)的更多相关文章
- 2018 icpc 青岛网络赛 J.Press the Button
Press the Button Time Limit: 1 Second Memory Limit: 131072 KB BaoBao and DreamGrid are playing ...
- 2018 ICPC 沈阳网络赛
2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...
- 2018 ICPC 徐州网络赛
2018 ICPC 徐州网络赛 A. Hard to prepare 题目描述:\(n\)个数围成一个环,每个数是\(0\)~\(2^k-1\),相邻两个数的同或值不为零,问方案数. solution ...
- 2018 ICPC 焦作网络赛 E.Jiu Yuan Wants to Eat
题意:四个操作,区间加,区间每个数乘,区间的数变成 2^64-1-x,求区间和. 题解:2^64-1-x=(2^64-1)-x 因为模数为2^64,-x%2^64=-1*x%2^64 由负数取模的性质 ...
- 2018 ICPC南京网络赛 L Magical Girl Haze 题解
大致题意: 给定一个n个点m条边的图,在可以把路径上至多k条边的权值变为0的情况下,求S到T的最短路. 数据规模: N≤100000,M≤200000,K≤10 建一个立体的图,有k层,每一层是一份原 ...
- 2018 icpc 徐州网络赛 F Features Track
这个题,我也没想过我这样直接就过了 #include<bits/stdc++.h> using namespace std; ; typedef pair<int,int> p ...
- 2018 ACM-ICPC 青岛网络赛
最近打比赛不知道为什么总是怀疑自己 写完之后不敢交,一定跟学长说一遍自己的思路 然后发现"哦原来我是对的" 然后就A掉了…… 所以还是要有自信 Problem A 最大值直接输出m ...
- 【2018 ICPC焦作网络赛 K】Transport Ship(多重背包二进制优化)
There are N different kinds of transport ships on the port. The ith kind of ship can carry the weigh ...
- 【2018 ICPC焦作网络赛 G】Give Candies(费马小定理+快速幂取模)
There are N children in kindergarten. Miss Li bought them N candies. To make the process more intere ...
随机推荐
- hsdfz -- 6.17 -- day2
今日依旧康复…… 当天晚上被老师拉去小吃街了,晚上回来精力憔悴,所以并没有当天写 反正就惨,因为估错复杂度,期望得分100分最后结果20分 (我的复杂度是nlog^2n的,正确性有保障,稳! 事后:还 ...
- 第一章 HTML+CSS(中)
4.域元素(form表单.textarea文本域.fieldset域集合.input使用) 案例 表单 用户名: 密码: 昵称: 你喜欢的水果有? 苹果 黄瓜 香蕉 请选择性别 男 女 请选择你要的网 ...
- nginx屏蔽某段IP、某个国家的IP
nginx中可通过写入配置文件的方法来达到一定的过滤IP作用,可使用deny来写. deny的使用方法可用于前端服务器无防护设备的时候过滤一些异常IP,过滤的client ip会被禁止再次访问,起到一 ...
- [转]Python如何引入自定义模块?
转自 http://www.cnblogs.com/JoshuaMK/p/5205398.html Python运行环境在查找库文件时是对 sys.path 列表进行遍历,如果我们想在运行环境中注册新 ...
- unity的一些tips
主要是我知乎上回答的一个关于unity的tip,备忘. 说说我所看到unity相关的,不好的习惯: 1 尽量不要在Awake(), start()等函数内加入业务逻辑的初始化代码.首先无法简便的直接启 ...
- 【Python】2.x与3.x版本的选用&版本间的区别
转自 http://www.runoob.com/python/python-2x-3x.html 一.2.x与3.x版本的选用建议 Python的3.0版本,常被称为Python 3000, ...
- MYSQL ERROR 2003 (HY000): Can't connect to MySQL server on '192.168.10.210' (111) 解决方法
今天在测试MySQL的连接时候,发现连接不通过,并报错ERROR 2003 (HY000): Can't connect to mysql server on '192.168.10.210' (11 ...
- C++Primer第五版——习题答案详解(十)
习题答案目录:https://www.cnblogs.com/Mered1th/p/10485695.html 第11章 关联容器 练习11.3 #include<iostream> #i ...
- python之路——14
王二学习python的笔记以及记录,如有雷同,那也没事,欢迎交流,wx:wyb199594 复习 1.迭代器 1.双下方法:不常直接调用,是通过其他语法触发的 2.可迭代的:可迭代协议——含有__it ...
- percona-toolkit(pt-online-schema-change)工具包的安装和使用
1.下载和安装percona toolkit的包 #yum install http://www.percona.com/downloads/percona-release/redhat/0.1-4/ ...