最近想学数论

刚好今天(初赛上午)智推了一个数论题

我屁颠屁颠地去学了乘法逆元

然后水掉了P3811P2613

(zcy吊打集训队!)(逃

然后才开始做这题。

乘法逆元

乘法逆元的思路大致就是a*x恒等于1(mod b)满足a,b互质,则x为a的逆元

这里给一个P2613的函数

void exgcd(int a, int b, int &d, int &x,int &y)
{
if (b == ) {
d = a;
x = ;
y = ;
return;
}
exgcd(b, a%b, d, x, y);
int t = y;
y = x - (a / b)*y;
x = t;
}

还有一个线性算法,就是适合P3811的

a[i] = (p-p/i)*a[p%i]%p;//zcyddjxd

大致就是这两种了

本蒟蒻在数学一本通上看的线性貌似是a[i] = -(p/i)*a[p%i]%p; 看起来用在这里不行

思路

上面介绍了一下乘法逆元的算法,其中第一种就是扩展欧几里得的出来的

我这里引用@huangdu233 大佬的题解的分析(我自己推导不来,只会插模板)

求解不定方程a*x+b*y==gcd(a,b);
先给个解法推导吧:
∵a=[a/b]*b+a%b;
又∵欧几里得知:gcd(a,b)==gcd(b,a%b);
∴([a/b]*b+a%b)*x+b*y=gcd(a,b);
∴[a/b]*b*x+(a%b)*x+b*y=gcd(a,b);
∴b*([a/b]*x+y)+(a%b)*x=gcd(b,a%b);
看到这里,我们不难发现:
令:a'=b,x'=[a/b]*x+y,b'=a%b,y'=x;
整理后原式又变成了:a'*x'+b'*y'==gcd(a',b');
当当当当!!!!!可以递归了

废话了那么多,我就直接给代码吧

#include<bits/stdc++.h>
#define ll long long
#define mod 19260817
#define MAXN 10010
using namespace std;
ll a,b,x,y;
void exgcd(ll a, ll b, ll &x, ll &y)
{
if (b == ) {
x = ;
y = ;
return;
}
exgcd(b, a%b, y, x);
y -= (a / b)*x;
}
int main()
{
cin >> a >> b;
exgcd(a, b, x, y);
cout << (x + b) % b;
}

(刚用上VisualStudio 感觉还行)

注意

刚发现hl大佬写了这题的题解!

https://www.luogu.org/blog/hl666/solution-p1082

Orz 太强了

[P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)的更多相关文章

  1. luogu1082 [NOIp2012]同余方程 (扩展欧几里得)

    由于保证有解,所以1%gcd(x,y)=0,所以gcd(x,y)=1,直接做就行了 #include<bits/stdc++.h> #define pa pair<int,int&g ...

  2. hdu_1576A/B(扩展欧几里得求逆元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others)    Me ...

  3. 扩展欧几里得模板&逆元求法

    拓展欧几里得: 当 gcd ( a , b )= d 时,求绝对值和最小的 x , y 使得 x * a + y * b = d : d = gcd ( a , b ) = gcd ( b , a m ...

  4. luogu P1082 同余方程 |扩展欧几里得

    题目描述 求关于 x的同余方程 ax≡1(modb) 的最小正整数解. 输入格式 一行,包含两个正整数 a,ba,b,用一个空格隔开. 输出格式 一个正整数 x,即最小正整数解.输入数据保证一定有解. ...

  5. NOIP2012 同余方程-拓展欧几里得

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...

  6. 洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)

    P2054 [AHOI2005]洗牌 扩展欧拉定理求逆元 $1 2 3 4 5 6$$4 1 5 2 6 3$$2 4 6 1 3 5$$1 2 3 4 5 6$ 手推一下样例,你就会发现是有规律的: ...

  7. hdu 1576 A/B 【扩展欧几里得】【逆元】

    <题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...

  8. 【数学】【NOIp2012】同余方程 题解 以及 关于扩展欧几里得与同余方程

    什么是GCD? GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可).在开头,我们先下几个定义: ①a|b表示a能整除b(a是b的约数) ②a mod b表示a-[a/b]b([a/b]在Pa ...

  9. 【扩展欧几里得】NOIP2012同余方程

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...

随机推荐

  1. C#递归拷贝文件删除文件

    拷贝文件及子文件,最后一个参数排除,哪个不要删除.(其实就是移动的效果) //拷贝文件及子文件 public static void CopyDirectory(string src, string ...

  2. 修改Tomcat默认连接数

    <Connector port=" protocol="HTTP/1.1" connectionTimeout=" redirectPort=" ...

  3. kafka 备忘

    创建topic/usr/local/kafka/bin/kafka-topics.sh --create --zookeeper 127.0.0.1:2181 --partitions 3 --rep ...

  4. [转] Shell编程之数组使用

    #!/bin/bash #基本数组操作a=(1 2 3) ##()表示空数组echo "第0个元素:"${a[0]}echo "所有元素: "${a[@]}ec ...

  5. CentOS6— Redis安装(转和延续)

    Part I. Redis安装(转载部分) 一.安装(官网地址 http://redis.io/download) wget http://download.redis.io/redis-stable ...

  6. C# 之 反射性能优化3

    阅读目录 开始 用Delegate优化反射的缺点 用Delegate优化反射的优点 用CodeDOM优化反射的优点 如何用好CodeDOM? 用CodeDOM优化反射的缺点 能不能不使用委托? 根据反 ...

  7. 分享几个在线生成网址二维码的API接口

    现在很多大网站都有这样的一个功能,使用手机扫描一下网页上的二维码便可快速在手机上访问网站.想要实现这样的功能其实很简单,下面麦布分享几个在线生成网址二维码的API接口.都是采用http协议接口,无需下 ...

  8. tomcat 反代配置

    tomcat反代可以基于nginx , http进行反代 反代服务器: 有两个网口  反代服务器一般有两块网卡一块处于外网,一块处于内网用于与后端服务器通信 tomcat 节点处于内网地址 1 tom ...

  9. 浏览器iscroll

    ::-webkit-scrollbar{width:4px;height:4px;background:transparent}::-webkit-scrollbar-track{background ...

  10. P1080 国王游戏 贪心 高精度

    题目描述 恰逢 HH国国庆,国王邀请nn 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 nn 位大臣排成一排,国王站在队伍的 ...