pandas分组group
Pandas对象可以分成任何对象。有多种方式来拆分对象,如 -
- obj.groupby(‘key’)
- obj.groupby([‘key1’,’key2’])
- obj.groupby(key,axis=1)
现在来看看如何将分组对象应用于DataFrame对象
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/5/24 15:03
# @Author : zhang chao
# @File : s.py
import numpy as np
import pandas as pd
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
print (df)
print("=======================================")
print (df.groupby('Team'))
print("=======================================")
print (df.groupby('Team').groups)
print("=======================================")
print (df.groupby(['Team','Year']).groups)
#迭代遍历分组
print("迭代遍历分组:")
print("=======================================")
grouped = df.groupby('Year')
for name,group in grouped:
print (name)
print (group)
#使用get_group()方法,可以选择一个组
print("使用get_group()方法,可以选择一个组:")
print("=======================================")
grouped = df.groupby('Year')
print (grouped.get_group(2014))
print("=======================================")
grouped = df.groupby('Year')
print (grouped['Points'].agg(np.mean))
#另一种查看每个分组的大小的方法是应用size()函数
print("另一种查看每个分组的大小的方法是应用size()函数:")
print("=======================================")
grouped = df.groupby('Team')
print (grouped.agg(np.size))
#通过分组系列,还可以传递函数的列表或字典来进行聚合
print("通过分组系列,还可以传递函数的列表或字典来进行聚合:")
print("=======================================")
grouped = df.groupby('Team')
agg = grouped['Points'].agg([np.sum, np.mean, np.std])
print (agg)
#分组或列上的转换返回索引大小与被分组的索引相同的对象。因此,转换应该返回与组块大小相同的结果。
print("分组或列上的转换返回索引大小与被分组的索引相同的对象。因此,转换应该返回与组块大小相同的结果。:")
print("=======================================")
grouped = df.groupby('Team')
score = lambda x: (x - x.mean()) / x.std()*10
print (grouped.transform(score))
#过滤根据定义的标准过滤数据并返回数据的子集。filter()函数用于过滤数据
print("=======================================")
print("过滤根据定义的标准过滤数据并返回数据的子集。filter()函数用于过滤数据:")
df = pd.DataFrame(ipl_data)
filter = df.groupby('Team').filter(lambda x: len(x) >= 3)
print (filter)
print("=======================================") D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py
Points Rank Team Year
0 876 1 Riders 2014
1 789 2 Riders 2015
2 863 2 Devils 2014
3 673 3 Devils 2015
4 741 3 Kings 2014
5 812 4 kings 2015
6 756 1 Kings 2016
7 788 1 Kings 2017
8 694 2 Riders 2016
9 701 4 Royals 2014
10 804 1 Royals 2015
11 690 2 Riders 2017
=======================================
<pandas.core.groupby.DataFrameGroupBy object at 0x000000000D6317B8>
=======================================
{'Kings': Int64Index([4, 6, 7], dtype='int64'), 'Riders': Int64Index([0, 1, 8, 11], dtype='int64'), 'Devils': Int64Index([2, 3], dtype='int64'), 'Royals': Int64Index([9, 10], dtype='int64'), 'kings': Int64Index([5], dtype='int64')}
=======================================
{('Kings', 2017): Int64Index([7], dtype='int64'), ('Riders', 2015): Int64Index([1], dtype='int64'), ('Kings', 2016): Int64Index([6], dtype='int64'), ('Riders', 2014): Int64Index([0], dtype='int64'), ('Royals', 2015): Int64Index([10], dtype='int64'), ('Royals', 2014): Int64Index([9], dtype='int64'), ('kings', 2015): Int64Index([5], dtype='int64'), ('Kings', 2014): Int64Index([4], dtype='int64'), ('Riders', 2017): Int64Index([11], dtype='int64'), ('Devils', 2014): Int64Index([2], dtype='int64'), ('Riders', 2016): Int64Index([8], dtype='int64'), ('Devils', 2015): Int64Index([3], dtype='int64')}
迭代遍历分组:
=======================================
2014
Points Rank Team Year
0 876 1 Riders 2014
2 863 2 Devils 2014
4 741 3 Kings 2014
9 701 4 Royals 2014
2015
Points Rank Team Year
1 789 2 Riders 2015
3 673 3 Devils 2015
5 812 4 kings 2015
10 804 1 Royals 2015
2016
Points Rank Team Year
6 756 1 Kings 2016
8 694 2 Riders 2016
2017
Points Rank Team Year
7 788 1 Kings 2017
11 690 2 Riders 2017
使用get_group()方法,可以选择一个组:
=======================================
Points Rank Team Year
0 876 1 Riders 2014
2 863 2 Devils 2014
4 741 3 Kings 2014
9 701 4 Royals 2014
=======================================
Year
2014 795.25
2015 769.50
2016 725.00
2017 739.00
Name: Points, dtype: float64
另一种查看每个分组的大小的方法是应用size()函数:
=======================================
Points Rank Year
Team
Devils 2 2 2
Kings 3 3 3
Riders 4 4 4
Royals 2 2 2
kings 1 1 1
通过分组系列,还可以传递函数的列表或字典来进行聚合:
=======================================
sum mean std
Team
Devils 1536 768.000000 134.350288
Kings 2285 761.666667 24.006943
Riders 3049 762.250000 88.567771
Royals 1505 752.500000 72.831998
kings 812 812.000000 NaN
分组或列上的转换返回索引大小与被分组的索引相同的对象。因此,转换应该返回与组块大小相同的结果。:
=======================================
Points Rank Year
0 12.843272 -15.000000 -11.618950
1 3.020286 5.000000 -3.872983
2 7.071068 -7.071068 -7.071068
3 -7.071068 7.071068 7.071068
4 -8.608621 11.547005 -10.910895
5 NaN NaN NaN
6 -2.360428 -5.773503 2.182179
7 10.969049 -5.773503 8.728716
8 -7.705963 5.000000 3.872983
9 -7.071068 7.071068 -7.071068
10 7.071068 -7.071068 7.071068
11 -8.157595 5.000000 11.618950
=======================================
过滤根据定义的标准过滤数据并返回数据的子集。filter()函数用于过滤数据:
Points Rank Team Year
0 876 1 Riders 2014
1 789 2 Riders 2015
4 741 3 Kings 2014
6 756 1 Kings 2016
7 788 1 Kings 2017
8 694 2 Riders 2016
11 690 2 Riders 2017
======================================= Process finished with exit code 0
pandas分组group的更多相关文章
- Pandas分组(GroupBy)
任何分组(groupby)操作都涉及原始对象的以下操作之一.它们是 - 分割对象 应用一个函数 结合的结果 在许多情况下,我们将数据分成多个集合,并在每个子集上应用一些函数.在应用函数中,可以执行以下 ...
- Oracle 表分组 group by和模糊查询like
分组group by写法 select 字段名 from 表名 group by 字段名 查询这个字段名里的种类分组后可以加聚合函数select 字段名,聚合函数 from 表名 group by 字 ...
- MySQL数据分组Group By 和 Having
现有以下的学生信息表: 若果现在想计算每个班的平均年龄,使用where的操作如下: SELECT Cno AS 班级, AVG(Sage) AS 平均年龄 FROM stu ; 这样的话,有多少个班就 ...
- mysql分组GROUP BY常用sql
数据分组 GROUP BY GROUP BY可以根据一个或多个字段进行分组. 比如,根据prod_id分组: SELECT prod_id ,user_id FROM products GROUP B ...
- 第17课-数据库开发及ado.net 聚合函数,模糊查询like,通配符.空值处理.order by排序.分组group by-having.类型转换-cast,Convert.union all; Select 列 into 新表;字符串函数;日期函数
第17课-数据库开发及ado.net 聚合函数,模糊查询like,通配符.空值处理.order by排序.分组group by-having.类型转换-cast,Convert.union all; ...
- TFS二次开发10——分组(Group)和成员(Member)
TFS SDK 10 ——分组(Group)和成员(Member) 这篇来介绍怎样读取TFS服务器上的用户信息 首先TFS默认有如下分组(Group): SharePoint Web Applicat ...
- Pandas分组运算(groupby)修炼
Pandas分组运算(groupby)修炼 Pandas的groupby()功能很强大,用好了可以方便的解决很多问题,在数据处理以及日常工作中经常能施展拳脚. 今天,我们一起来领略下groupby() ...
- 【SQL】分组数据,过滤分组-group by , having
学习笔记,原文来自http://blog.csdn.net/robinjwong/article/details/24845125 创建分组 - GROUP BY 分组是在SELECT语句的GROUP ...
- pandas分组和聚合
Pandas分组与聚合 分组 (groupby) 对数据集进行分组,然后对每组进行统计分析 SQL能够对数据进行过滤,分组聚合 pandas能利用groupby进行更加复杂的分组运算 分组运算过程:s ...
随机推荐
- 查看linux服务器的配置
https://zhidao.baidu.com/question/489376921.html 1.查看逻辑CPU个数: #cat /proc/cpuinfo |grep "process ...
- PAT A1104 Sum of Number Segments (20 分)——数学规律,long long
Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For exam ...
- 201904:Action recognition based on 2D skeletons extracted from RGB videos
论文标题:Action recognition based on 2D skeletons extracted from RGB videos 发表时间:02 April 2019 解决问题/主要思想 ...
- QT qss 初级介绍
这篇文章来自于QT的帮助文档,你要是看了最新版的,会发现讲解得更棒.如果你的英文不是那么好,或者说看着头疼,那还是来看此篇吧. 在此之前说一个帮助文档的特别用法,绝不仅仅是搜单词,QT的文档非常强大的 ...
- Linux命令——cat/less/more的区别
cat命令:用于显示整个文件的内容,单独使用没有翻页功能,经常和 more 命令搭配使用,cat 命令还可以将数个文件合并成一个文件. more命令:让画面在显示满一页时暂停,此时可按空格健继续显示下 ...
- Zephyr的Logging
1 前言 刚接触Zephyr,两眼一抹黑,光是阅读代码对系统没什么概念.还需要通过一些日志了解系统的运行机制,以及各种内核行为. 这就需要借助系统的Logging,大体分为两部分System Logg ...
- 读《Top benefits of continuous integration》有感
看到一片文章<Top benefits of continuous integration>,这张图画的很棒.将整个CI流程各阶段,列举出来了. 作者在文章里面介绍了CI和TDD,以及采用 ...
- [拍摄]日本AVENIR 6-36mm老式变焦镜头拆解 型号SSL06036M
老式监控摄像头的变焦镜头,做工不错,拆了分享一下 品牌:AVENIR型号:SSL06036M光圈:1:1.2产地:日本焦距:6-36mm 外观 图片:QQ截图20141104125759.jpg 图片 ...
- Luogu3825 NOI2017 游戏 2-SAT
传送门 第一眼看上去似乎是一个3-SAT问题 然而\(d \leq 8\)给我们的信息就是:暴力枚举 枚举\(x\)型地图变成\(a\)型地图还是\(b\)型地图(实际上不要枚举\(c\),因为\(a ...
- webpackt入门1:webpack介绍&webpack安装&使用webpack打包
本篇博客不是原创,简书的zhangwang写的,原文太长,我这里只是提取了一部分. 原文地址:入门webpack,看这篇就够了 一.Webpack解决了什么问题 问题1.JavaScript这个脚本化 ...