求$\sqrt{x-5}+\sqrt{24-3x}$的最值.



通常考试时会考你求最大值,常见的方式有三角代换,这里给如下做法:

证明:$\sqrt{x-5}+\sqrt{24-3x}=\sqrt{x-5}+\sqrt{3}\sqrt{8-x}\le\sqrt{(1+3)(x-5+8-x)}=\sqrt{12}$

         这边用了柯西不等式.

       $\sqrt{x-5}+\sqrt{24-3x}=\sqrt{x-5}+\sqrt{3}\sqrt{8-x}\ge\sqrt{x-5}+\sqrt{8-x}=\sqrt{(\sqrt{x-5}+\sqrt{8-x})^2}$

                                       $=\sqrt{3+2\sqrt{x-5}\sqrt{8-x}}\ge\sqrt{3}$

        当$x=8$时候等号成立.

MT【68】一边柯西一边舍弃的更多相关文章

  1. MT【146】一边柯西,一边舍弃

    (2018浙江省赛9题)设$x,y\in R$满足$x-6\sqrt{y}-4\sqrt{x-y}+12=0$,求$x$的范围______ 解答:$x+12=6\sqrt{y}+4\sqrt{x-y} ...

  2. MT【62】柯西求三角值域

    求$sinx(\sqrt{cos^2x+24}-cosx)$的范围. 解答:[-5,5] $$\because (sinx \sqrt{cos^2x+24}-cosxsinx)^2$$ $$\le ( ...

  3. MT【124】利用柯西求最值

    已知 \(a\) 为常数,函数\(f(x)=\dfrac{x}{\sqrt{a-x^2}-\sqrt{1-x^2}}\) 的最小值为\(-\dfrac{2}{3}\),则 \(a\) 的取值范围___ ...

  4. P87LPC760/61/62/64/67/68/69/78/79芯片解密单片机破解价格

    NXP恩智浦P87LPC760/61/62/64/67/68/69/78/79芯片解密单片机破解 NXP LPC700系列单片机解密型号: P87LPC759.P87LPC760.P87LPC761. ...

  5. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  6. Matlab的68个小常识

    1.det(A)可以计算矩阵A的行列式值.inv(A)可以计算矩阵A的逆 2.rref(A)可以将矩阵A化为行简化阶梯梯形矩阵 3.eps是系统定义的容许误差,eps=2.2204*10-16 4.p ...

  7. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  8. Scala 深入浅出实战经典 第68讲:Scala并发编程原生线程Actor、Cass Class下的消息传递和偏函数实战解析

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...

  9. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

随机推荐

  1. Python写代码的时候为什么要注释?Sun因此被Oracle收购

    导读: 此块分为:1.注释的重要性 2.如何正确注释 注释的重要性 在我们看代码的时候,会遇到很多看不懂得代码,特别是在做项目的时候,代码的注释以及命名习惯的重要性就有了为什么这么说呢? 因为在很多情 ...

  2. mvn打包到私服的命令

    1.mvn clean package install -Dmaven.test.skip=true deploy 2.docker清楚Nexus私服上包的命令: a) docker exec -it ...

  3. 把DataTable转换为List<T>

    前一篇有学习过<把List<T>转换为DataTable>http://www.cnblogs.com/insus/p/8043173.html 那此篇,将是学习反向,把Dat ...

  4. Intel Digital Innovation Industry Summit(2018.08.17)

    时间:2018.08.17地点:北京金隅喜来登大酒店

  5. SQL跨服务器查询数据库

    有时候一个项目需要用到两个数据库或多个数据库而且这些数据库在不同的服务器上时,就需要通过跨服务器查找数据 在A服务器的数据库a查询服务器B的数据库b 的bb表 假如服务器B的IP地址为:10.0.22 ...

  6. 2018年高教社杯全国大学生数学建模竞赛D题解题思路

    题目 D题   汽车总装线的配置问题 一.问题背景 某汽车公司生产多种型号的汽车,每种型号由品牌.配置.动力.驱动.颜色5种属性确定.品牌分为A1和A2两种,配置分为B1.B2.B3.B4.B5和B6 ...

  7. 跨平台、跨语言应用开发,Elements 介绍

    目录 1,Elements 介绍 2,Elements 版本 3,Elements 能干嘛 4,Elements  IDES 5,Elements 工具 1,Elements 介绍 RemObject ...

  8. list 的 增 删

    增: 1. name = [] 2. name.append() 3. name.extend(name2) name2为可迭代的 name + name2 与之效果一样,合并为一个列表 4. nam ...

  9. PHP 文件写入和读取(必看篇)

    文章提纲: 一.实现文件读取和写入的基本思路 二.使用fopen方法打开文件 三.文件读取和文件写入操作 四.使用fclose方法关闭文件 五.文件指针的移动 六.Windows和UNIX下的回车和换 ...

  10. 2017乌鲁木齐区域赛D题Fence Building-平面图的欧拉公式

    这个题B站上面有这题很完整的分析和证明,你实在不懂,可以看看这个视频  https://www.bilibili.com/video/av19849697?share_medium=android&a ...