题意:

就是分糖果 然后A觉得B比他优秀  所以分的糖果可以比他多 但最多不能超过c1个, B又觉得A比他优秀。。。。

符合差分约束的条件

设A分了x个  B分了y个  则x-y <= c1 , 根据其它的关系可以找出c2 c3 ····

如果不懂差分约束的请  点击

所以构成不等式组:x-y <= c1   x-y <= c2    x-y <=c3

因为这些条件要都符合 所以取最小的c  即最短路

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <stack>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int maxn = , INF = 0x7fffffff;
typedef long long LL;
int head[maxn], d[maxn], vis[maxn];
int n, m;
struct node{
int u,v,w,next;
}Node[maxn]; void add(int u,int v,int w,int i)
{
Node[i].u = u;
Node[i].v = v;
Node[i].w = w;
Node[i].next = head[u];
head[u] = i;
} void spfa(int s)
{
stack<int> Q;
for(int i=; i<=n; i++) d[i] = INF;
d[s] = ;
mem(vis,);
Q.push(s);
vis[s] = ;
while(!Q.empty())
{
int x = Q.top(); Q.pop();
vis[x] = ;
for(int i=head[x]; i!=-; i=Node[i].next)
{
node e = Node[i];
if(d[e.v] > d[x] + e.w)
{
d[e.v] = d[x] + e.w;
if(!vis[e.v])
{
Q.push(e.v);
vis[e.v] = ;
}
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
mem(head,-);
for(int i=; i<m; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w,i);
} spfa();
printf("%d\n",d[n]); return ;
}

POJ - 3159(Candies)差分约束的更多相关文章

  1. POJ 3159 Candies 差分约束dij

    分析:设每个人的糖果数量是a[i] 最终就是求a[n]-a[1]的最大值 然后给出m个关系 u,v,c 表示a[u]+c>=a[v] 就是a[v]-a[u]<=c 所以对于这种情况,按照u ...

  2. [poj 3159]Candies[差分约束详解][朴素的考虑法]

    题意 编号为 1..N 的人, 每人有一个数; 需要满足 dj - di <= c 求1号的数与N号的数的最大差值.(略坑: 1 一定要比 N 大的...difference...不是" ...

  3. poj 3159 Candies 差分约束

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 22177   Accepted: 5936 Descrip ...

  4. POJ 3159 Candies (图论,差分约束系统,最短路)

    POJ 3159 Candies (图论,差分约束系统,最短路) Description During the kindergarten days, flymouse was the monitor ...

  5. POJ 3159 Candies(SPFA+栈)差分约束

    题目链接:http://poj.org/problem?id=3159 题意:给出m给 x 与y的关系.当中y的糖数不能比x的多c个.即y-x <= c  最后求fly[n]最多能比so[1] ...

  6. POJ 3159 Candies(差分约束,最短路)

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 20067   Accepted: 5293 Descrip ...

  7. POJ 3159 Candies 解题报告(差分约束 Dijkstra+优先队列 SPFA+栈)

    原题地址:http://poj.org/problem?id=3159 题意大概是班长发糖果,班里面有不良风气,A希望B的糖果不比自己多C个.班长要满足小朋友的需求,而且要让自己的糖果比snoopy的 ...

  8. POJ 3159 Candies(差分约束+spfa+链式前向星)

    题目链接:http://poj.org/problem?id=3159 题目大意:给n个人派糖果,给出m组数据,每组数据包含A,B,C三个数,意思是A的糖果数比B少的个数不多于C,即B的糖果数 - A ...

  9. 图论--差分约束--POJ 3159 Candies

    Language:Default Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 43021   Accep ...

  10. (简单) POJ 3159 Candies,Dijkstra+差分约束。

    Description During the kindergarten days, flymouse was the monitor of his class. Occasionally the he ...

随机推荐

  1. 如何修改Oracle服务IP地址

    oracle数据库所在的机器更改IP地址后,发现无法连接,解决这个问题,需要修改一下对应的文件: F:\app\zhaohe\product\11.2.0\dbhome_1\NETWORK\ADMIN ...

  2. 10-51单片机ESP8266学习-AT指令(ESP8266连接路由器,建立TCP服务器,分别和C#TCP客户端和AndroidTCP客户端通信+花生壳远程通信)

    http://www.cnblogs.com/yangfengwu/p/8871464.html 先把源码和资料链接放到这里 源码链接:https://pan.baidu.com/s/1wT8KAOI ...

  3. React-UI组件和容器组件

    UI组件负责页面的渲染,又叫傻瓜组件. 容器组件负责逻辑,又叫聪明组件. 当一个组件只有render函数的时候,就可以用无状态组件的形式来定义这个组件.无状态组件怎么定义呢?其实就是一个函数,接受pr ...

  4. angularjs呼叫Web API

    今早有分享一篇<创建Web API并使用>http://www.cnblogs.com/insus/p/7771428.html 接下来,我再分享一篇,怎样在angularjs去呼叫Web ...

  5. C# 深浅复制 MemberwiseClone

    学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现在,学习代表你的将来 最近拜读了大话设计模式:原型模式,该模式主要应用C# 深浅复制来实现的!关于深浅复制大家可参考 ...

  6. 案例学python——案例二:连接数据库MySql

    调侃的话:案例一跑完之后,欣赏把玩了一番.人就有点飘飘然,昨天除了做饭吃饭,就是玩三国杀,江郎才尽,今天周一,不飘了,敲点代码,看看Python操作数据库有啥不一样的. 前期准备: 1.数据库 电脑上 ...

  7. item 12: 把重写函数声明为“override”的

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 C++中的面向对象编程总是围绕着类,继承,以及虚函数.这个世界中, ...

  8. BugkuCTF 域名解析

    前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...

  9. 解决error while loading shared libraries: libXXX.so.X: cannot open shared object file: No such file

    原文地址:http://blog.csdn.net/yjk13703623757/article/details/53217377 一.问题 运行hydra时,提示错误: hydra : error ...

  10. ZJOI2008 生日聚会Party

    对于任意连续区间的限制,可以转化为以i结尾的所有区间的限制.这个转换在昨天的后缀自动机题也有用到,因此将其命名为区后变换.稍加分析后,我们记录以i结尾任意区间最大差即可进行DP转移.这个转换同时也创造 ...