BZOJ2839 : 集合计数 (广义容斥定理)
题目
一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集),
现在要在这 \(2^N\) 个集合中取出若干集合(至少一个),
使得它们的交集的元素个数为 \(K\) ,求取法的方案数,答案模 \(1000000007\) 。
\((1 \le N \le 10^6, 0 \le K \le N)\)
题解
又是一道 裸的 广义容斥定理 还没这道题难qwq
广义容斥定理 (二项式反演) :
\[\displaystyle b_k = \sum_{i=k}^n \binom i k a_i
\]\[\Updownarrow
\]\[\displaystyle a_k = \sum_{i=k}^{n} (-1)^{i-k} \binom i k b_i
\]
不难发现又是一个恰好 我们转化成至少就行了
那么交集有至少 \(i\) 个集合的个数 \(b_i\) 就是
\]
一开始我以为后面那个直接是 \(2^{n-i}\) .... 没过样例搜了波题解... 发现是 \(2^{2^{n-i}}\) qwq
为什么呢 我们这样考虑 当前枚举了一个大小为 \(i\) 交集后 还剩下 \(n-i\) 个元素
每个元素有选和不选的两种方案 那么共有 \(2^{n-i}\) 个互不相同的集合
那么每个集合我们又有选和不选两种方案 那么总共就是 \(2^{2^{n-i}}\) 种咯qwq
然后套上去 答案就是
\]
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std;
inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("P2839.in", "r", stdin);
freopen ("P2839.out", "w", stdout);
#endif
}
typedef long long ll;
const ll Mod = 1e9 + 7;
ll fpm(ll x, int power) {
ll res = 1;
for (; power; power >>= 1, (x *= x) %= Mod)
if (power & 1) (res *= x) %= Mod;
return res;
}
const int N = 1e6;
ll fac[N + 100], ifac[N + 100], pow2[N + 100], ppow2[N + 100];
void Init(int maxn) {
fac[0] = ifac[0] = pow2[0] = ppow2[0] = 1;
For (i, 1, maxn) fac[i] = fac[i - 1] * i % Mod, pow2[i] = pow2[i - 1] * 2 % Mod, ppow2[i] = ppow2[i - 1] * 2 % (Mod - 1);
ifac[maxn] = fpm(fac[maxn], Mod - 2);
Fordown (i, maxn - 1, 1) ifac[i] = ifac[i + 1] * (i + 1) % Mod;
}
ll ans = 0;
ll C(int n, int m) {
if (n < 0 || m < 0 || n < m) return 0;
return fac[n] * ifac[m] % Mod * ifac[n - m] % Mod;
}
int main () {
File();
Init(N);
int n = read(), k = read();
For (i, k, n)
(ans += Mod + ((i - k) & 1 ? -1 : 1) * (C(i, k) * C(n, i) % Mod * fpm(2, ppow2[n - i]) % Mod)) %= Mod;
printf ("%lld\n", ans);
return 0;
}
BZOJ2839 : 集合计数 (广义容斥定理)的更多相关文章
- bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] ...
- bzoj2839 集合计数(容斥+组合)
集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...
- BZOJ 2839: 集合计数 广义容斥
在一个 $N$ 个元素集合中的所有子集中选择若干个,且交集大小为 $k$ 的方案数. 按照之前的套路,令 $f[k]$ 表示钦定交集大小为 $k$,其余随便选的方案数. 令 $g[k]$ 表示交集恰好 ...
- 【BZOJ2839】集合计数(容斥,动态规划)
[BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...
- 【BZOJ2839】集合计数 组合数+容斥
[BZOJ2839]集合计数 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数 ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- How Many Sets I(容斥定理)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556 How Many Sets I Time Limit: 2 ...
- UVA-11806 Cheerleaders 计数问题 容斥定理
题目链接:https://cn.vjudge.net/problem/UVA-11806 题意 在一个mn的矩形网格里放k个石子,问有多少方法. 每个格子只能放一个石头,每个石头都要放,且第一行.最后 ...
- 51nod1284容斥定理
1284 2 3 5 7的倍数 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N = 10, ...
随机推荐
- NOIp2014提高组初赛错题简析
总体分析 \(89pts\),粗略来看选择题错的比较多,\(-6pts\).同时又是尿性的填空杀扣了\(5pts\). 不过后面的两大题全对了还是可喜可贺 错题精析 单项选择T8 编译器的主要功能是( ...
- Luogu P1896 [SCOI2005]互不侵犯
一道超级简单的状压DP题所以说状压是个好东西 看数据范围,同时我们发现一个格子要么放国王or不放,因此可以用二进制数来表示某一行的国王放置信息 于是我们马上想到用\(f_{i,j}\)表示放了前\(i ...
- 移动端自动化测试-WTF Appium?
手机App分为两大类,原生App(Native App)和混合APP(Hybrid App) 原生App(Native App) 原生App实际就是我们所常见的传统App开发模式,云端数据存储+App ...
- item 10: 比起unscoped enum更偏爱scoped enum
本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 一般情况下,在花括号中声明一个name(包括变量名,函数名),这个 ...
- YY:2018互联网创业公司应看清的事情
潮流,技术,生活方式,盈利模式,消费人群几乎每年都在改变,2018,你看到的是怎样的一盘棋. 2018年是个很好的数字,很多互联网公司寄予希望在这个幸运数字年头奋起一搏,拿到一份可观的酬金.特别是一些 ...
- NOIP模拟赛20180917 隐藏题目
给定n个数,值域范围1~n,每个数都不同,求满足所有相邻数不同的排列数.\(n\le 30\). 状压DP很好想,然而我考试时没写出来.对于排列还是有很多转化方法.另外要注意数据范围.
- VS2013安装和单元测试
1. VC2013安装过程及使用感受 刚上大一的时候老师推荐我们用VC++6.0.当时也就听了老师的话用VC++6.0编程了一段时间.后来上了大二买了电脑VC++6.0支持不了WIN8.1所以我就开始 ...
- 软件项目第一次Sprint总结
成果评分表: 组名 分数 原因 9-652 6 界面和谐生动,可运行,在目前阶段可时间基本操作 hzsy -2 代码下载,但实现安卓和相机调用 JYJe族 -1 实现安卓界面,完成一项功能,做得少 结 ...
- mapreduce 中 map数量与文件大小的关系
学习mapreduce过程中, map第一个阶段是从hdfs 中获取文件的并进行切片,我自己在好奇map的启动的数量和文件的大小有什么关系,进过学习得知map的数量和文件切片的数量有关系,那文件的大小 ...
- nginx+tpmcat+redis实现session共享
nginx+tpmcat+redis实现session共享 版本:nginx nginx-1.8.0.tar.gztomcat apache-tomcat-7.0.78.tar.gzredis re ...