参考博客:http://blog.51cto.com/ahalei/1387799

       与Floyd-Warshall算法一样这里仍然使用二维数组e来存储顶点之间边的关系,初始值如下。
       我们还需要用一个一维数组dis来存储1号顶点到其余各个顶点的初始路程,如下。
       我们将此时dis数组中的值称为最短路的“估计值”。
       既然是求1号顶点到其余各个顶点的最短路程,那就先找一个离1号顶点最近的顶点。通过数组dis可知当前离1号顶点最近是2号顶点。当选择了2号顶点后,dis[2]的值就已经从“估计值”变为了“确定值”,即1号顶点到2号顶点的最短路程就是当前dis[2]值。为什么呢?你想啊,目前离1号顶点最近的是2号顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得1号顶点到2号顶点的路程进一步缩短了。因为1号顶点到其它顶点的路程肯定没有1号到2号顶点短,对吧O(∩_∩)O~
       既然选了2号顶点,接下来再来看2号顶点有哪些出边呢。有2->3和2->4这两条边。先讨论通过2->3这条边能否让1号顶点到3号顶点的路程变短。也就是说现在来比较dis[3]和dis[2]+e[2][3]的大小。其中dis[3]表示1号顶点到3号顶点的路程。dis[2]+e[2][3]中dis[2]表示1号顶点到2号顶点的路程,e[2][3]表示2->3这条边。所以dis[2]+e[2][3]就表示从1号顶点先到2号顶点,再通过2->3这条边,到达3号顶点的路程。
       我们发现dis[3]=12,dis[2]+e[2][3]=1+9=10,dis[3]>dis[2]+e[2][3],因此dis[3]要更新为10。这个过程有个专业术语叫做“松弛”。即1号顶点到3号顶点的路程即dis[3],通过2->3这条边松弛成功。这便是Dijkstra算法的主要思想:通过“边”来松弛1号顶点到其余各个顶点的路程。
 
       同理通过2->4(e[2][4]),可以将dis[4]的值从∞松弛为4(dis[4]初始为∞,dis[2]+e[2][4]=1+3=4,dis[4]>dis[2]+e[2][4],因此dis[4]要更新为4)。
       刚才我们对2号顶点所有的出边进行了松弛。松弛完毕之后dis数组为:
       接下来,继续在剩下的3、4、5和6号顶点中,选出离1号顶点最近的顶点。通过上面更新过dis数组,当前离1号顶点最近是4号顶点。此时,dis[4]的值已经从“估计值”变为了“确定值”。下面继续对4号顶点的所有出边(4->3,4->5和4->6)用刚才的方法进行松弛。松弛完毕之后dis数组为:
       继续在剩下的3、5和6号顶点中,选出离1号顶点最近的顶点,这次选择3号顶点。此时,dis[3]的值已经从“估计值”变为了“确定值”。对3号顶点的所有出边(3->5)进行松弛。松弛完毕之后dis数组为:
       继续在剩下的5和6号顶点中,选出离1号顶点最近的顶点,这次选择5号顶点。此时,dis[5]的值已经从“估计值”变为了“确定值”。对5号顶点的所有出边(5->4)进行松弛。松弛完毕之后dis数组为:
       最后对6号顶点所有点出边进行松弛。因为这个例子中6号顶点没有出边,因此不用处理。到此,dis数组中所有的值都已经从“估计值”变为了“确定值”。
       最终dis数组如下,这便是1号顶点到其余各个顶点的最短路径。
       OK,现在来总结一下刚才的算法。算法的基本思想是:每次找到离源点(上面例子的源点就是1号顶点)最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。基本步骤如下:
  • 将所有的顶点分为两部分:已知最短路程的顶点集合P和未知最短路径的顶点集合Q。最开始,已知最短路径的顶点集合P中只有源点一个顶点。我们这里用一个book[ i ]数组来记录哪些点在集合P中。例如对于某个顶点i,如果book[ i ]为1则表示这个顶点在集合P中,如果book[ i ]为0则表示这个顶点在集合Q中。

  • 设置源点s到自己的最短路径为0即dis=0。若存在源点有能直接到达的顶点i,则把dis[ i ]设为e[s][ i ]。同时把所有其它(源点不能直接到达的)顶点的最短路径为设为∞。

  • 在集合Q的所有顶点中选择一个离源点s最近的顶点u(即dis[u]最小)加入到集合P。并考察所有以点u为起点的边,对每一条边进行松弛操作。例如存在一条从u到v的边,那么可以通过将边u->v添加到尾部来拓展一条从s到v的路径,这条路径的长度是dis[u]+e[u][v]。如果这个值比目前已知的dis[v]的值要小,我们可以用新值来替代当前dis[v]中的值。

  • 重复第3步,如果集合Q为空,算法结束。最终dis数组中的值就是源点到所有顶点的最短路径。

     #include<cstring>
    #include<iostream>
    #define Max 6
    #define inf 0x3f3f3f3f
    using namespace std; /*
    VM[][]->邻接矩阵
    v0->起始顶点,即计算顶点v0到其他顶点的距离
    prepoint[i]-> 即起始顶点到第i个顶点最短路径所经历的全部顶点中,位于顶点i之前的那个顶点
    dist[i]-> 起始顶点到顶点i的最短路径长度
    */ void dijkstra(unsigned int VM[Max][Max],int v0,unsigned int prepoint[],unsigned int dist[])
    {
    int k;
    unsigned int temp,min;
    int flag[Max]={};//flag[i]表示起始顶点到顶点i的最短距离已获取
    for(int i=;i<Max;i++)
    {
    flag[i]=; //顶点i的最短路径还没获取
    prepoint[i]=; //顶点i的前驱顶点是0
    dist[i]=VM[v0][i]; //顶点i的最短路径为起始顶点到顶点i的权
    }
    flag[v0]=;
    prepoint[]=;
    for(int i=;i<Max;i++)
    {
    min=inf;
    for(int j=;j<Max;j++)
    {
    if(flag[j]==&&min>dist[j])//寻找当前的最小路径,即数组dist中最小的权的顶点
    {
    min=dist[j];
    k=j;
    }
    }
    flag[k]=; //标记顶点k已经获得最短路径
    for(int j=;j<Max;j++) //当前已知顶点k的最短路径,更新为获取最短路径的顶点的最短路径和前驱顶点
    {
    temp=(VM[k][j]==inf?inf:(min+VM[k][j]));
    if(dist[j]>temp&&flag[j]==)
    {
    dist[j]=temp;
    prepoint[j]=k;
    }
    }
    }
    for(int i=;i<Max;i++)
    {
    cout<<"shortest(1,"<<i+<<")="<<dist[i]<<endl;
    }
    }
    int main()
    {
    unsigned int VM[Max][Max]={{, , , inf, inf, inf},
    {inf, , , , inf, inf},
    {inf, inf, , inf, , inf},
    {inf, inf, , , , },
    {inf, inf, inf, inf, , },
    {inf, inf, inf, inf, inf, }};
    unsigned int prepoint[Max];
    unsigned int dist[Max];
    memset(prepoint,,sizeof(prepoint));
    memset(dist,,sizeof(dist));
    dijkstra(VM,,prepoint,dist);
    return ;
    }

Dijstra算法求最短路径的更多相关文章

  1. C++迪杰斯特拉算法求最短路径

    一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...

  2. Dijkstra算法求最短路径(java)(转)

    原文链接:Dijkstra算法求最短路径(java) 任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到 ...

  3. js迪杰斯特拉算法求最短路径

    1.后台生成矩阵 名词解释和下图参考:https://blog.csdn.net/csdnxcn/article/details/80057574 double[,] arr = new double ...

  4. 《算法导论》读书笔记之图论算法—Dijkstra 算法求最短路径

    自从打ACM以来也算是用Dijkstra算法来求最短路径了好久,现在就写一篇博客来介绍一下这个算法吧 :) Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的 ...

  5. _DataStructure_C_Impl:Dijkstra算法求最短路径

    // _DataStructure_C_Impl:Dijkstra #include<stdio.h> #include<stdlib.h> #include<strin ...

  6. 通俗易懂理解——dijkstra算法求最短路径

    迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径.它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止 ###基本思想 通过Dij ...

  7. Dijkstra算法求最短路径 Java实现

    基本原理: 迪杰斯特拉算法是一种贪心算法. 首先建立一个集合,初始化只有一个顶点.每次将当前集合的所有顶点(初始只有一个顶点)看成一个整体,找到集合外与集合距离最近的顶点,将其加入集合并检查是否修改路 ...

  8. Java实现Dijkstra算法求最短路径

    任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层 ...

  9. Dijkstra算法求最短路径

    #include <stdio.h> #include <stdlib.h> #include <string.h> #include <limits.h&g ...

随机推荐

  1. OpenTK教程-2绘制一个三角形(正确的方式)

    上一个教程向我们展示了如何在屏幕上画一个三角形.但是,我说过,那是一种古老的方式,即使它能够正常运行,但是现在这已经不是"正确"的方式.上篇文章中我们将几何发送到GPU的方式是所谓 ...

  2. 值类型和引用类型的区别,struct和class的区别

    C#值类型和引用类型 1.简单比较 值类型的变量直接存储数据,而引用类型的变量持有的是数据的引用,数据存储在数据堆中. 值类型(value type):byte,short,int,long,floa ...

  3. Jvm 10 升级笔记

    移除了 JPEGCodec https://www.cnblogs.com/liaolongjun/p/6878359.html

  4. Python 工程管理及 virtualenv 的迁移

    virtualenv 是管理 python 工程的利器,它可以很好的帮你维护项目中的依赖,使用 virtualenv,还能保持 global 库的干净.不会被不同项目中的第三方库所污染. virtua ...

  5. PHP输入流 php://input 相关【转】

    为什么xml_rpc服务端读取数据都是通过file_get_contents(‘php://input', ‘r').而不是从$_POST中读取,正是因为xml_rpc数据规格是xml,它的Conte ...

  6. 705 B. Spider Man

    传送门 [http://codeforces.com/contest/705/problem/B] 题意 这题意看原文的真tm难懂Woc,但结合样例就知道大概意思了 两个轮流分环,可以这么理解两个人轮 ...

  7. Beta版本发布报告

    项目名称 学霸系统写手机客户端 项目版本 Beta版本 负责人 北京航空航天大学计算机学院 hots团队 联系方式 http://www.cnblogs.com/hotsbuaa/ 要求发布日期 20 ...

  8. 【实践报告】Linux实践四

    Linux内核分析 实践四——ELF文件格式分析 一.概述 1.ELF全称Executable and Linkable Format,可执行连接格式,ELF格式的文件用于存储Linux程序.ELF文 ...

  9. 数组与字符串三(Cocos2d-x 3.x _Array容器)

    "程序=数据结构+算法" 在面向对象的语言中,诸如数组.堆栈.队列等的结构都被封装成了特定的类,按照特定数据结构的算法设计起来,这就是容器类. Cocos2d-x中,能使用的容器类 ...

  10. David Silver强化学习Lecture2:马尔可夫决策过程

    课件:Lecture 2: Markov Decision Processes 视频:David Silver深度强化学习第2课 - 简介 (中文字幕) 马尔可夫过程 马尔可夫决策过程简介 马尔可夫决 ...