hdu 1465 不容易系列之一(错排模板)
不容易系列之一
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20941 Accepted Submission(s): 8937
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。
不幸的是,这种小概率事件又发生了,而且就在我们身边:
事情是这样的——HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!
现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?
错排:
d[1]=0; d[2]=1;
d[n]=(n-1)*(d[n-1]+d[n-2])
注意用long long
代码:
#include<stdio.h>
int main()
{
int n;
long long a[];
a[]=;a[]=;
for(int i=;i<=;i++)
{
a[i]=(i-)*(a[i-]+a[i-]);
}
while(~scanf("%d",&n))
{
printf("%lld\n",a[n]);
}
return ;
}
错排问题:
错排问题是组合数学中的问题之一。考虑一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排。 n个元素的错排数记为Dn。 研究一个排列错排个数的问题,叫做错排问题或称为更列问题。
最早研究错排问题的是尼古拉·伯努利和欧拉,因此历史上也称为伯努利-欧拉的装错信封的问题。这个问题有许多具体的版本,如在写信时将n封信装到n个不同的信封里,有多少种全部装错信封的情况?又比如四人各写一张贺年卡互相赠送,有多少种赠送方法?自己写的贺年卡不能送给自己,所以也是典型的错排问题。
==== 这里引用一下错排公式的推导方法。
方法一:
n各有序的元素应有n!种不同的排列。如若一个排列式的所有的元素都不在原来的位置上,则称这个排列为错排。任给一个n,求出1,2,……,n的错排个数Dn共有多少个。
递归关系式为:D(n)=(n-1)(D(n-1)+D(n-2))
D(1)=0,D(2)=1
可以得到:
错排公式为Dn=n!(1-1/2!+1/3!-.....+(-1)n/n!)
其中,n!=1*2*3*.....*n,
特别地,有0!=0,1!=1.
解释:
n 个不同元素的一个错排可由下述两个步骤完成:
第一步,“错排” 1 号元素(将 1 号元素排在第 2 至第 n 个位置之一),有 n - 1 种方法。
第二步,“错排”其余 n - 1 个元素,按如下顺序进行。视第一步的结果,若1号元素落在第 k 个位置,第二步就先把 k 号元素“错排”好, k 号元素的不同排法将导致两类不同的情况发生:
1、 k 号元素排在第1个位置,留下的 n - 2 个元素在与它们的编号集相等的位置集上“错排”,有 f(n -2) 种方法;
2、 k 号元素不排第 1 个位置,这时可将第 1 个位置“看成”第 k 个位置,于是形成(包括 k 号元素在内的) n - 1 个元素的“错排”,有 f(n - 1) 种方法。据加法原理,完成第二步共有 f(n - 2)+f(n - 1) 种方法。
根据乘法原理, n 个不同元素的错排种数
f(n) = (n-1)[f(n-2)+f(n-1)] (n>2) 。
证毕。
方法二:
n个人每个人都不站在原来的位置的方法数有:
f(n)=n!(1/2!-1/3!+1/4!+..+(-1)^n/n!)
此公式的推导过程要用到筛法公式,而且推导过程很复杂,除了竞赛高考肯定不会出现,对于n不大于4时可采用枚举法.一般只需记住n不大于5的情况即可
f(2)=1,f(3)=2,f(4)=9,f(5)=44
此外还有一个简单的公式f(n)={n!/e},{x}表示最接近x的整数,e为自然底数,其值为2.7182818.........,一般取2.72即可
====
我这里就是用的错排公式f(n) = (n-1)[f(n-2)+f(n-1)],同时注意会超int。
hdu 1465 不容易系列之一(错排模板)的更多相关文章
- HDOJ(HDU) 1465 不容易系列之一(错排)
Problem Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好"一件"事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就 ...
- HDU 1465 不容易系列之一(错排,递归)
简而言之,就是把n个信封全部装错的可能数.(中问题,具体看题目) //当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示, //那么M(n-1)就表示n-1个编号元素放在 ...
- HDU 1465 不容易系列之一( 错排水题 )
链接:传送门 思路:错排模板题,水题是非常浪费时间的 /************************************************************************ ...
- HDU——1465不容易系列之一(错排公式)
不容易系列之一 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Su ...
- HDU 1465 不容易系列之一 (错排公式+容斥)
题目链接 Problem Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好"一件"事情尚且不易,若想永远成功而总从不失败,那更是难上 ...
- HDU - 1465 不容易系列之一(错排)
HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟! 现在的问题是:请大家 ...
- HDU 1465 不容易系列之排错
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Description 大家常常感 ...
- HDU 1465 不容易系列之一(排错公式)
大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样. 话虽这样说,我还是要告诉 ...
- HDU 1465 不容易系列之一
扯淡 貌似有傻逼的做法XD 话说我没开long long,忘读入n,忘了清零ans WA了三遍是什么操作啊 傻了傻了 思路 显然是一个错排问题啊XD 但是我们不套公式,我们用一发二项式反演 二项式反演 ...
随机推荐
- Optimization Tipss for Multi Vendor eCommerce Software to drive, retain more sales
1. Make the Registration & Listing simple - Only if you keep the registration process and produ ...
- JZOJ 3521. 道路覆盖
Description ar把一段凹凸不平的路分成了高度不同的N段,并用H[i]表示第i段高度.现在Tar一共有n种泥土可用,它们都能覆盖给定的连续的k个部分. 对于第i种泥土,它的价格为C[i],可 ...
- mysql sum 为 0 的解决方法
使用SQL语句SUM函数的时候,默认查询没有值的情况下返回的是null,而实际可能我们要用的是返回0. 解决方法:SELECT SUM(count) FROM test_table 改成: SELEC ...
- 多个".h"文件中声明及定义 全局变量和函数
一.".h"文件必须以如下格式书写 例:文件<CZ_efg_hi.h"> ------------文件内容----------- #ifndef CZ_Efg ...
- 从库函数操作RCC的流程来理解偏移变量
下面是库函数操作RCC流程,看完后有我的疑问:偏移地址的理解 1,库函数直接操作:RCC库函数操作 RCC_APB2PeriphClockCmd ()RCC->APB2ENR |= RCC_A ...
- linux中jdk的安装与mysql 的安装
1.linux安装jdk #先找到 安装包#cd /usr/java tar -zxvf jdk-8u31-linux-x64.tar.gz 2.安装选择要安装java的位置,如/usr/目录下,新建 ...
- bootstrap设计进度条和圆点
1.设计进度条.文字前面的圆点和图片 2.思路: (1)设计进度条 (a) 进度条有滚动效果,要加上类.active (b)进度条的颜色通过类.progress-bar-success来写,可以写成. ...
- linux 多播
1.概念 单播是用于两个主机之间传送数据,广播是一个主机对局域网内的所有主机发送数据.而多播,又称为组播,它是对一组特定的主机通信.将网络上同一类型 业务逻辑上分组,只和组内的成员通信,其它主机没有加 ...
- 打包成apk,生成apk文件,上传到网站服务器提供链接下载
Android开发把项目打包成apk: 做完一个Android项目之后,如何才能把项目发布到Internet上供别人使用呢?我们需要将自己的程序打包成Android安装包文件--APK(Android ...
- Pascal小游戏 双人射击
一个双人的游戏 Pascal源码附上 只要俩人不脑残,一下午玩不完...又是控制台游戏中的一朵奇葩. Free Pascal 射击游戏 Program shooting_game; uses crt; ...