不容易系列之一

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20941    Accepted Submission(s): 8937

Problem Description
大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。

不幸的是,这种小概率事件又发生了,而且就在我们身边:
事情是这样的——HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!

现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?

 
Input
输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正整数n(1<n<=20),n表示8006的网友的人数。
 Output
对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。
 Sample Input
2
3
 Sample Output
1
2
 
分析:典型的错排问题
思路:错排的模板

错排:

  d[1]=0;   d[2]=1;

  d[n]=(n-1)*(d[n-1]+d[n-2])

注意用long long

代码:

#include<stdio.h>
int main()
{
int n;
long long a[];
a[]=;a[]=;
for(int i=;i<=;i++)
{
a[i]=(i-)*(a[i-]+a[i-]);
}
while(~scanf("%d",&n))
{
printf("%lld\n",a[n]);
}
return ;
}

错排问题:

错排问题组合数学中的问题之一。考虑一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排。 n个元素的错排数记为Dn。 研究一个排列错排个数的问题,叫做错排问题或称为更列问题

最早研究错排问题的是尼古拉·伯努利欧拉,因此历史上也称为伯努利-欧拉的装错信封的问题。这个问题有许多具体的版本,如在写信时将n封信装到n个不同的信封里,有多少种全部装错信封的情况?又比如四人各写一张贺年卡互相赠送,有多少种赠送方法?自己写的贺年卡不能送给自己,所以也是典型的错排问题。

==== 这里引用一下错排公式的推导方法。

方法一:

n各有序的元素应有n!种不同的排列。如若一个排列式的所有的元素都不在原来的位置上,则称这个排列为错排。任给一个n,求出1,2,……,n的错排个数Dn共有多少个。

递归关系式为:D(n)=(n-1)(D(n-1)+D(n-2))

D(1)=0,D(2)=1

可以得到:

错排公式为Dn=n!(1-1/2!+1/3!-.....+(-1)n/n!)

其中,n!=1*2*3*.....*n,

特别地,有0!=0,1!=1.

解释:

n 个不同元素的一个错排可由下述两个步骤完成:

第一步,“错排” 1 号元素(将 1 号元素排在第 2 至第 n 个位置之一),有 n - 1 种方法。 
第二步,“错排”其余 n - 1 个元素,按如下顺序进行。视第一步的结果,若1号元素落在第 k 个位置,第二步就先把 k 号元素“错排”好, k 号元素的不同排法将导致两类不同的情况发生:
1、 k 号元素排在第1个位置,留下的 n - 2 个元素在与它们的编号集相等的位置集上“错排”,有 f(n -2) 种方法;
2、 k 号元素不排第 1 个位置,这时可将第 1 个位置“看成”第 k 个位置,于是形成(包括 k 号元素在内的) n - 1 个元素的“错排”,有 f(n - 1) 种方法。据加法原理,完成第二步共有 f(n - 2)+f(n - 1) 种方法。 
根据乘法原理, n 个不同元素的错排种数 
f(n) = (n-1)[f(n-2)+f(n-1)] (n>2) 。 
证毕。

方法二:

n个人每个人都不站在原来的位置的方法数有: 
f(n)=n!(1/2!-1/3!+1/4!+..+(-1)^n/n!) 
此公式的推导过程要用到筛法公式,而且推导过程很复杂,除了竞赛高考肯定不会出现,对于n不大于4时可采用枚举法.一般只需记住n不大于5的情况即可 
f(2)=1,f(3)=2,f(4)=9,f(5)=44 
此外还有一个简单的公式f(n)={n!/e},{x}表示最接近x的整数,e为自然底数,其值为2.7182818.........,一般取2.72即可

====

我这里就是用的错排公式f(n) = (n-1)[f(n-2)+f(n-1)],同时注意会超int。

hdu 1465 不容易系列之一(错排模板)的更多相关文章

  1. HDOJ(HDU) 1465 不容易系列之一(错排)

    Problem Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好"一件"事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就 ...

  2. HDU 1465 不容易系列之一(错排,递归)

    简而言之,就是把n个信封全部装错的可能数.(中问题,具体看题目) //当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示, //那么M(n-1)就表示n-1个编号元素放在 ...

  3. HDU 1465 不容易系列之一( 错排水题 )

    链接:传送门 思路:错排模板题,水题是非常浪费时间的 /************************************************************************ ...

  4. HDU——1465不容易系列之一(错排公式)

    不容易系列之一 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  5. HDU 1465 不容易系列之一 (错排公式+容斥)

    题目链接 Problem Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好"一件"事情尚且不易,若想永远成功而总从不失败,那更是难上 ...

  6. HDU - 1465 不容易系列之一(错排)

    HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟! 现在的问题是:请大家 ...

  7. HDU 1465 不容易系列之排错

    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Description 大家常常感 ...

  8. HDU 1465 不容易系列之一(排错公式)

    大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样.  话虽这样说,我还是要告诉 ...

  9. HDU 1465 不容易系列之一

    扯淡 貌似有傻逼的做法XD 话说我没开long long,忘读入n,忘了清零ans WA了三遍是什么操作啊 傻了傻了 思路 显然是一个错排问题啊XD 但是我们不套公式,我们用一发二项式反演 二项式反演 ...

随机推荐

  1. json_encode 的小技巧

    做了一个 API 文档自动生成,解析的是每个 控制器类 的注释 json 数据,在做测试工具的时候,多层的 json 只有通过一个 textarea 把数据弄进去.如下图 怎么格式化 Json 数据并 ...

  2. 工作中遇到的比较奇怪的一些sql(一些子查询)

    在列中进行子查询 1.在一个表中有多个员工ID,比如一个下单员工,一个修改订单的员工,可以使用在列中进行子查询,具体如下: ( SELECT staff_name FROM sp_staff_basi ...

  3. 适配IE8+等浏览器的适配播放插件

    function myBrowser(){ var userAgent = navigator.userAgent; //ȡ���������userAgent�ַ� var isOpera = us ...

  4. https refused 解决方法

    今天调试Android程序,所有的手机都ok,后来,我一个手机一直说,refused. 其实这就说明代码是没有问题的,你应该可以根据这个把代码的原因排除.然后剩下的,网络请求还能有什么,网路白. 果然 ...

  5. luogu3317 [SDOI2014]重建

    原来矩阵树定理对于边是概率的情况也是适用的qwqwq. ref #include <iostream> #include <cstdio> #include <cmath ...

  6. 《Cracking the Coding Interview》——第11章:排序和搜索——题目2

    2014-03-21 20:49 题目:设计一种排序算法,使得anagram排在一起. 解法:自定义一个comparator,使用额外的空间来统计字母个数,然后比较字母个数. 代码: // 11.2 ...

  7. 【Max Points on a Line 】cpp

    题目: Given n points on a 2D plane, find the maximum number of points that lie on the same straight li ...

  8. Pythonyield使用浅析

    转自:https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ 您可能听说过,带有 yield 的函数在 Python ...

  9. Python 3基础教程11-如何利用pip命令安装包和模块

    本文介绍如何利用pip命令安装Python相关的包和模块.在Python中有些方法或者模块是自带的功能,也叫(build-in),内构函数,实际使用,可能内构函数或者模块不能完成我们的任务,我们就需要 ...

  10. RAID介绍和实现

    RAID的全称是廉价磁盘冗余阵列(Redundant Array of Inexpensive Disks),于1987年由美国Berkeley 大学的两名工程师提出的. RAID出现的,最初目的是将 ...