Luogu 4867 Gty的二逼妹子序列
BZOJ3809,是权限题。
我永远喜欢莫队。
先莫队一下移下左右指针,然后用一个数据结构维护一下区间$[a, b]$中的颜色的值,跟着指针移动一起修改修改,每一次$query$的时候就相当于查询一下$[a, b]$中的和。
其实可以直接对颜色进行分块,维护一下块内的值以及每一个位置的答案,每一次修改是$O(1)$的,每一次查询是$O(\sqrt{n})$的,因为总共要进行$m$次查询,所以总的时间复杂度是$O((n + m)\sqrt{n})$,这样写可以比树状数组以及其他的数据结构少一个$log$。
然而这个$log$在你谷上跑的飞快……
最近真是颓了。
Code:
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std; const int N = 1e5 + ;
const int M = 1e6 + ; int n, qn, a[N], blo, ans[N];
int cnt[N], bel[N], ln[N], rn[N]; struct Querys {
int l, r, st, ed, id, ans;
} q[M]; bool cmp(const Querys &x, const Querys &y) {
if(bel[x.l] == bel[y.l]) return x.r < y.r;
else return x.l < y.l;
} inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline int query(int st, int ed) {
int res = ;
if(bel[st] == bel[ed]) {
for(int i = st; i <= ed; i++)
if(cnt[i]) res++;
} else {
for(int i = st; i <= rn[bel[st]]; i++)
if(cnt[i]) res++;
for(int i = ln[bel[ed]]; i <= ed; i++)
if(cnt[i]) res++;
for(int i = bel[st] + ; i <= bel[ed] - ; i++)
res += ans[i];
}
return res;
} inline void add(int x) {
++cnt[a[x]];
if(cnt[a[x]] == ) ans[bel[a[x]]]++;
} inline void del(int x) {
--cnt[a[x]];
if(cnt[a[x]] == ) ans[bel[a[x]]]--;
} inline void solve() {
sort(q + , q + + qn, cmp);
for(int l = , r = , i = ; i <= qn; i++) {
for(; l < q[i].l; del(l++));
for(; l > q[i].l; add(--l));
for(; r < q[i].r; add(++r));
for(; r > q[i].r; del(r--));
q[q[i].id].ans = query(q[i].st, q[i].ed);
}
} int main() {
read(n), read(qn);
for(int i = ; i <= n; i++) read(a[i]); blo = sqrt(n);
for(int i = ; i <= blo; i++) {
ln[i] = (i - ) * blo + ;
rn[i] = i * blo;
}
if(rn[blo] < n)
++blo, ln[blo] = rn[blo - ] + , rn[blo] = n;
for(int i = ; i <= blo; i++) {
for(int j = ln[i]; j <= rn[i]; j++)
bel[j] = i;
} for(int i = ; i <= qn; i++) {
read(q[i].l), read(q[i].r), read(q[i].st), read(q[i].ed);
q[i].id = i;
} solve(); for(int i = ; i <= qn; i++)
printf("%d\n", q[i].ans);
return ;
}
Luogu 4867 Gty的二逼妹子序列的更多相关文章
- 【题解】Luogu P4867 Gty的二逼妹子序列
原题传送门 同Luogu P4396 [AHOI2013]作业 询问多了10倍,但还能跑过(smog #include <bits/stdc++.h> #define N 100005 # ...
- BZOJ 3809: Gty的二逼妹子序列
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1387 Solved: 400[Submit][Status][Di ...
- 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1072 Solved: 292[Submit][Status][Di ...
- Bzoj 3809: Gty的二逼妹子序列 莫队,分块
3809: Gty的二逼妹子序列 Time Limit: 35 Sec Memory Limit: 28 MBSubmit: 868 Solved: 234[Submit][Status][Dis ...
- 3809: Gty的二逼妹子序列
3809: Gty的二逼妹子序列 链接 分析: 和这道AHOI2013 作业差不多.权值是1~n的,所以对权值进行分块.$O(1)$修改,$O(\sqrt n)$查询. 代码: #include< ...
- 【BZOJ 3809】 3809: Gty的二逼妹子序列 (莫队+分块)
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1728 Solved: 513 Description Autumn ...
- 【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块
[BZOJ3809]Gty的二逼妹子序列 Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b ...
- [AHOI2013]作业 & Gty的二逼妹子序列 莫队
---题面--- 题解: 题目要求统计一个区间内数值在[a, b]内的数的个数和种数,而这个是可以用树状数组统计出来的,所以可以考虑莫队. 考虑区间[l, r]转移到[l, r + 1],那么对于维护 ...
- [bzoj3809]Gty的二逼妹子序列_莫队_分块
Gty的二逼妹子序列 bzoj-3809 题目大意:给定一个n个正整数的序列,m次询问.每次询问一个区间$l_i$到$r_i$中,权值在$a_i$到$b_i$之间的数有多少个. 注释:$1\le n\ ...
随机推荐
- ps6-图层基础与操作技巧
1.图层的新建.复制与删除 ctrl+j:复制图层,可以用复制选区作为新图层 Shift+Ctrl+Alt+e:在新的空白图层将下面所有的图层合并为一个图层. 2.选择复制与链接图层 在移动图层时,按 ...
- shell_script_查询主机名、ip地址 、DNS地址
#!/bin/bashhostnameip=`/sbin/ifconfig eth0|grep "inet addr:"|sed 's/Bcast.*$//'g |awk -F & ...
- bzoj 5016 一个简单的询问
THUWC 考了莫队(这个应该可以说吧) 然而不会莫队,签到失败,所以找到了一道长得差不多的题写一写 为什么这么长时间都没有发现这道题(半恼 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问 ...
- New Year and Buggy Bot
Bob programmed a robot to navigate through a 2d maze. The maze has some obstacles. Empty cells are d ...
- linux查询组与用户getent
getent group zabbix getent passwd zabbix getent group zabbix > /dev/null || groupadd -r zabbixget ...
- Python函数-map()
map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回.如下: def ...
- Java基础--压缩和解压缩gz包
gz是Linux和OSX中常见的压缩文件格式,下面是用java压缩和解压缩gz包的例子 public class GZIPcompress { public static void FileCompr ...
- Vue开发模板简介
1. 传统发开模式的问题 用传统模式引用vue.js以及其他的js文件的开发方式,会产生一些问题. 基于页面的开发模式:传统的引用vue.js以及其他的js文件的开发方式,限定了我们的开发模式是 ...
- vue-cli脚手架build目录中的webpack.dev.conf.js配置文件
此文章用来解释vue-cli脚手架build目录中的webpack.dev.conf.js配置文件 此配置文件是vue开发环境的wepack相关配置文件 关于注释 当涉及到较复杂的解释我将通过标识的方 ...
- pa14-30条职场经验
可以说是很多本厚厚的职场经验书籍的精华部分,掌握了这30条可以说是天下无敌了,但真要掌握这30条经验可不是什么容易的事情,他们都是环环相 扣的,一条做不好可能有些能做好的项目就会落空,耐下性子,看看你 ...