Road Networks

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Description

 

There is a road network comprised by M<tex2html_verbatim_mark> roads and N<tex2html_verbatim_mark> cities. For convenience, we use {1, 2,..., N}<tex2html_verbatim_mark> to denote the N<tex2html_verbatim_mark> cities. Each road between two cities i<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> , where 1i<tex2html_verbatim_mark> , jN<tex2html_verbatim_mark> and ij<tex2html_verbatim_mark> , has two types: One type is bidirectional, which allows a citizen to drive a car from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> (denoted by ij<tex2html_verbatim_mark> ) and from j<tex2html_verbatim_mark> to i<tex2html_verbatim_mark> (denoted by ji<tex2html_verbatim_mark> ). The other type is unidirectional, which allows a citizen to drive a car following exactly one direction, either from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> or from j<tex2html_verbatim_mark> to i<tex2html_verbatim_mark> .

We say that City j<tex2html_verbatim_mark> is reachable from City i<tex2html_verbatim_mark> if one can drive a car from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> , visiting a sequence of cities c1c2,..., ck<tex2html_verbatim_mark> for k 0<tex2html_verbatim_mark> , such thatic1c2...ckj<tex2html_verbatim_mark> . (Every city is always reachable from itself.) A region is a maximal set of cities so that the following mutually reachable property holds: for two arbitrary cities i<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> , i<tex2html_verbatim_mark> is reachable from j<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> is also reachable from i<tex2html_verbatim_mark> . The adjective ``maximal" means that if we include any other city in the given region, the mutually reachable property cannot be retained. Given a road network, your task is to write a computer program to compute the number of regions in the road network.

Technical Specification

  1. We use {1, 2,..., N}<tex2html_verbatim_mark> to denote the N<tex2html_verbatim_mark> cities.
  2. M2000<tex2html_verbatim_mark> is a non-negative integer
  3. N1000<tex2html_verbatim_mark> is a positive integer.
  4. If a road between i<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> is bidirectional, then we use two order pairs (ij)<tex2html_verbatim_mark> and (ji)<tex2html_verbatim_mark> to represent it. Otherwise, if a road between i<tex2html_verbatim_mark>and j<tex2html_verbatim_mark> is unidirectional from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> (respectively, j<tex2html_verbatim_mark> to i<tex2html_verbatim_mark> ), we use ( i<tex2html_verbatim_mark> , j<tex2html_verbatim_mark> ) (respectively, ( j<tex2html_verbatim_mark> , i<tex2html_verbatim_mark> )) to represent it.

Input

The input consists of a number of test cases. The first line of the input file contains an integer indicating the number of test cases to follow. Each test case consists of a road network, which has the following format: the first line of each test case contains two numbers, N<tex2html_verbatim_mark>and M<tex2html_verbatim_mark> , separated by a single space. The next M<tex2html_verbatim_mark> lines contain the description of M<tex2html_verbatim_mark> roads such that one line contains two cities representing an order pair (ij)<tex2html_verbatim_mark> . Each line is represented by two positive numbers separated by a single space; the first number representing the former element in the order pair and the second number representing the latter element in the order pair. A ` 0' at the (M+ 2)<tex2html_verbatim_mark> -th line of each test case (except for the last test case) indicates the end of this test case.

The next test case starts after the previous ending symbol `0'. Finally, a `-1' signals the end of the whole inputs.

Output

The output contains one line for each test case. Each line contains an integer, which is the number of the regions in the given road network.

Sample Input

2
3 2
1 2
1 3
0
3 3
1 2
2 3
3 1
-1

Sample Output

3
1 题目大意:给你n个点,m条有向边。问你这个图中的scc个数。 解题思路:求强连通分量的模板题,Tarjan算法水过。
/*
Tarjan
求强连通分量个数
*/
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<stack>
#include<vector>
#include<queue>
using namespace std;
const int maxn = 1e5+200;
vector<int>G[maxn];
int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt;
stack<int>S;
void dfs(int u){
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u);
for(int i = 0;i < G[u].size(); i++){
int v = G[u][i];
if(!pre[v]){
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}else if(!sccno[v]){
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if(lowlink[u] == pre[u]){
scc_cnt++;
for(;;){
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
}
void find_scc(int n){
dfs_clock = scc_cnt = 0;
while(!S.empty()) S.pop();
memset(sccno , 0, sizeof(sccno));
memset(pre, 0, sizeof(pre));
for(int i = 1; i <= n; i++){
if(!pre[i]) dfs(i);
}
}
int main(){
int T,n,m;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int a,b;
for(int i = 0; i < m; i++){
scanf("%d%d",&a,&b);
G[a].push_back(b);
}
scanf("%d",&a);
find_scc(n);
printf("%d\n",scc_cnt);
for(int i = 0; i <= n; i++){
G[i].clear();
}
}
return 0;
}

  

UVALive 4262——Trip Planning——————【Tarjan 求强连通分量个数】的更多相关文章

  1. UESTC 901 方老师抢银行 --Tarjan求强连通分量

    思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大.所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个D ...

  2. tarjan求强连通分量+缩点+割点以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  3. Tarjan求强连通分量,缩点,割点

    Tarjan算法是由美国著名计算机专家发明的,其主要特点就是可以求强连通分量和缩点·割点. 而强联通分量便是在一个图中如果有一个子图,且这个子图中所有的点都可以相互到达,这个子图便是一个强连通分量,并 ...

  4. tarjan求强连通分量+缩点+割点/割桥(点双/边双)以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  5. HDU 1827 Summer Holiday(tarjan求强连通分量+缩点构成新图+统计入度+一点贪心思)经典缩点入门题

    Summer Holiday Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  6. CCF 高速公路 tarjan求强连通分量

    问题描述 某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路. 现在,大臣们帮国王拟了一个修高速公路的 ...

  7. tarjan求强连通分量(模板)

    https://www.luogu.org/problem/P2341 #include<cstdio> #include<cstring> #include<algor ...

  8. Tarjan求强连通分量、求桥和割点模板

    Tarjan 求强连通分量模板.参考博客 #include<stdio.h> #include<stack> #include<algorithm> using n ...

  9. poj 2186 tarjan求强连通分量

    蕾姐讲过的例题..玩了两天后才想起来做 貌似省赛之后确实变得好懒了...再努力两天就可以去北京玩了! 顺便借这个题记录一下求强连通分量的算法 1 只需要一次dfs 依靠stack来实现的tarjan算 ...

随机推荐

  1. VisualGDB系列5:使用VS来开发Linux程序

    根据VisualGDB官网(https://visualgdb.com)的帮助文档大致翻译而成.主要是作为个人学习记录.有错误的地方,Robin欢迎大家指正. 本文演示如何使用VS来构建和调试Linu ...

  2. C#自定义控件 ————进度条

    先看看样式 一个扇形的进度条 对外公开的方法和属性 事件 value_change;//值改变时触发的事件progress_finshed;//进度条跑完时触发的事件 属性 Max_value//获取 ...

  3. (转)JAVA中的权限修饰符

    注:本博文是转载的,原文地址:http://blog.csdn.net/xk632172748/article/details/51755438 Java中修饰符总结: 访问控制修饰符 访问控制修饰符 ...

  4. 9、perldoc文档阅读器

    转载:http://www.cnblogs.com/nkwy2012/p/6016320.html 一般来说,将文档的名称作为参数传递给perldoc命令,即可查阅该文档.比如下面,给定文档名称per ...

  5. 22.ThinkPHP5框架缺陷导致远程命令执行

    前言: 昨天爆出了ThinkPHP5框架缺陷导致远程命令执行,大佬们都赶上潮流挖洞,小白还是默默学习一下这个漏洞 漏洞影响范围: Thinkphp 5.1.0 - 5.1.31 Thinkphp 5. ...

  6. js常用知识点汇总

    1.json字符串与json对象相互转化(转至:http://www.jb51.net/article/43136.htm) SON字符串: var str1 = '{ "name" ...

  7. highcharts图表的上钻下钻,下钻数据,与回取数据

    通常图表在下钻之后,会点返回,返回之后,可能需要调用上钻回调事件,在drillup事件里获取上钻数据,然后对需要联动进行操作: chart: { type: 'column', events: { d ...

  8. 使用MailMessage发送邮件

    SmtpClient smtp = new SmtpClient(); //实例化一个SmtpClient smtp.DeliveryMethod = SmtpDeliveryMethod.Netwo ...

  9. Go语言——没有对象的面向对象编程

    本文译自Steve Francia在OSCON 2014的一个PPT,原作请前往:https://spf13.com/presentation/go-for-object-oriented-progr ...

  10. Spark 中的 RPC 的几个类

    Spark 中 RPC 部分的涉及了几个类,有点晕,在此记录一下 1. RpcEndpoint: RPC的一个端点.给定了相应消息的触发函数.保证  `onStart`, `receive` and ...