UVALive 4262——Trip Planning——————【Tarjan 求强连通分量个数】
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu
Description
There is a road network comprised by M<tex2html_verbatim_mark> roads and N<tex2html_verbatim_mark> cities. For convenience, we use {1, 2,..., N}<tex2html_verbatim_mark> to denote the N<tex2html_verbatim_mark> cities. Each road between two cities i<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> , where 1i<tex2html_verbatim_mark> , j
N<tex2html_verbatim_mark> and i
j<tex2html_verbatim_mark> , has two types: One type is bidirectional, which allows a citizen to drive a car from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> (denoted by i
j<tex2html_verbatim_mark> ) and from j<tex2html_verbatim_mark> to i<tex2html_verbatim_mark> (denoted by j
i<tex2html_verbatim_mark> ). The other type is unidirectional, which allows a citizen to drive a car following exactly one direction, either from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> or from j<tex2html_verbatim_mark> to i<tex2html_verbatim_mark> .
We say that City j<tex2html_verbatim_mark> is reachable from City i<tex2html_verbatim_mark> if one can drive a car from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> , visiting a sequence of cities c1, c2,..., ck<tex2html_verbatim_mark> for k 0<tex2html_verbatim_mark> , such thati
c1
c2
...
ck
j<tex2html_verbatim_mark> . (Every city is always reachable from itself.) A region is a maximal set of cities so that the following mutually reachable property holds: for two arbitrary cities i<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> , i<tex2html_verbatim_mark> is reachable from j<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> is also reachable from i<tex2html_verbatim_mark> . The adjective ``maximal" means that if we include any other city in the given region, the mutually reachable property cannot be retained. Given a road network, your task is to write a computer program to compute the number of regions in the road network.
Technical Specification
- We use {1, 2,..., N}<tex2html_verbatim_mark> to denote the N<tex2html_verbatim_mark> cities.
- M
2000<tex2html_verbatim_mark> is a non-negative integer
- N
1000<tex2html_verbatim_mark> is a positive integer.
- If a road between i<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> is bidirectional, then we use two order pairs (i, j)<tex2html_verbatim_mark> and (j, i)<tex2html_verbatim_mark> to represent it. Otherwise, if a road between i<tex2html_verbatim_mark>and j<tex2html_verbatim_mark> is unidirectional from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> (respectively, j<tex2html_verbatim_mark> to i<tex2html_verbatim_mark> ), we use ( i<tex2html_verbatim_mark> , j<tex2html_verbatim_mark> ) (respectively, ( j<tex2html_verbatim_mark> , i<tex2html_verbatim_mark> )) to represent it.
Input
The input consists of a number of test cases. The first line of the input file contains an integer indicating the number of test cases to follow. Each test case consists of a road network, which has the following format: the first line of each test case contains two numbers, N<tex2html_verbatim_mark>and M<tex2html_verbatim_mark> , separated by a single space. The next M<tex2html_verbatim_mark> lines contain the description of M<tex2html_verbatim_mark> roads such that one line contains two cities representing an order pair (i, j)<tex2html_verbatim_mark> . Each line is represented by two positive numbers separated by a single space; the first number representing the former element in the order pair and the second number representing the latter element in the order pair. A ` 0' at the (M+ 2)<tex2html_verbatim_mark> -th line of each test case (except for the last test case) indicates the end of this test case.
The next test case starts after the previous ending symbol `0'. Finally, a `-1' signals the end of the whole inputs.
Output
The output contains one line for each test case. Each line contains an integer, which is the number of the regions in the given road network.
Sample Input
2
3 2
1 2
1 3
0
3 3
1 2
2 3
3 1
-1
Sample Output
3
1 题目大意:给你n个点,m条有向边。问你这个图中的scc个数。 解题思路:求强连通分量的模板题,Tarjan算法水过。
/*
Tarjan
求强连通分量个数
*/
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<stack>
#include<vector>
#include<queue>
using namespace std;
const int maxn = 1e5+200;
vector<int>G[maxn];
int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt;
stack<int>S;
void dfs(int u){
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u);
for(int i = 0;i < G[u].size(); i++){
int v = G[u][i];
if(!pre[v]){
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}else if(!sccno[v]){
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if(lowlink[u] == pre[u]){
scc_cnt++;
for(;;){
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
}
void find_scc(int n){
dfs_clock = scc_cnt = 0;
while(!S.empty()) S.pop();
memset(sccno , 0, sizeof(sccno));
memset(pre, 0, sizeof(pre));
for(int i = 1; i <= n; i++){
if(!pre[i]) dfs(i);
}
}
int main(){
int T,n,m;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int a,b;
for(int i = 0; i < m; i++){
scanf("%d%d",&a,&b);
G[a].push_back(b);
}
scanf("%d",&a);
find_scc(n);
printf("%d\n",scc_cnt);
for(int i = 0; i <= n; i++){
G[i].clear();
}
}
return 0;
}
UVALive 4262——Trip Planning——————【Tarjan 求强连通分量个数】的更多相关文章
- UESTC 901 方老师抢银行 --Tarjan求强连通分量
思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大.所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个D ...
- tarjan求强连通分量+缩点+割点以及一些证明
“tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄> 自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...
- Tarjan求强连通分量,缩点,割点
Tarjan算法是由美国著名计算机专家发明的,其主要特点就是可以求强连通分量和缩点·割点. 而强联通分量便是在一个图中如果有一个子图,且这个子图中所有的点都可以相互到达,这个子图便是一个强连通分量,并 ...
- tarjan求强连通分量+缩点+割点/割桥(点双/边双)以及一些证明
“tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄> 自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...
- HDU 1827 Summer Holiday(tarjan求强连通分量+缩点构成新图+统计入度+一点贪心思)经典缩点入门题
Summer Holiday Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- CCF 高速公路 tarjan求强连通分量
问题描述 某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路. 现在,大臣们帮国王拟了一个修高速公路的 ...
- tarjan求强连通分量(模板)
https://www.luogu.org/problem/P2341 #include<cstdio> #include<cstring> #include<algor ...
- Tarjan求强连通分量、求桥和割点模板
Tarjan 求强连通分量模板.参考博客 #include<stdio.h> #include<stack> #include<algorithm> using n ...
- poj 2186 tarjan求强连通分量
蕾姐讲过的例题..玩了两天后才想起来做 貌似省赛之后确实变得好懒了...再努力两天就可以去北京玩了! 顺便借这个题记录一下求强连通分量的算法 1 只需要一次dfs 依靠stack来实现的tarjan算 ...
随机推荐
- 游戏中的 2D 可见性
转自:http://www.gameres.com/469173.html 拖动圆点转一圈,看看玩家都能看到些什么: 这个算法也能计算出给定光源所照亮的区域.对每条光线,我们可以构建出被照亮区域的光线 ...
- mount总结
挂载分区 mount基本语法 mount [参数] /dev/sdb1(需要挂载的分区) /sdb1(挂载目录) 参数是可选的,也可以不带参数,参数的使用方法(-o ro,sync,atime). 参 ...
- 关于hist
""" Demo of the histogram (hist) function with a few features. In addition to the bas ...
- shell批量创建用户随机密码
批量创建用户随机密码企业面试题3:批量创建10个系统帐号usr01-usr10并设置密码(密码为随机8位字符串). #! /bin/bash . /etc/init.d/functions Path= ...
- rsyn文件传输
Rsync的命令格式可以为以下六种: rsync [OPTION]... SRC DEST rsync [OPTION]... SRC [USER@]HOST:DEST rsync [OPTION]. ...
- PCLVisualizer可视化类(5)
博客转载自:http://www.pclcn.org/study/shownews.php?lang=cn&id=171 自定义交互 多数情况下,默认的鼠标和键盘交互设置不能满足用户的需求,用 ...
- python调用Linux下so文件
1.通过C语言编写一个简单max函数,生成一个max.so链接库 /* * # -shared 为链接库 让编译器知道是要编译一个共享库 * # -fPIC(Position Independent ...
- Centos下添加/删除用户
useradd具体参数 [root@yhwang ~] useradd -h Usage: useradd [options] LOGIN useradd -D useradd -D [options ...
- 《精通Spring4.X企业应用开发实战》读后感第五章(FactoryBean)
- StringBuffer输出
public class Test { public static void main(String[] args) { StringBuffer a = new StringBuffer(" ...