原文地址:http://www.cnblogs.com/GXZlegend/p/6805283.html


题目描述

有一个长度为n的数组{a1,a2,...,an}。m次询问,每次询问一个区间内最小没有出现过的自然数。

输入

第一行n,m。
第二行为n个数。
从第三行开始,每行一个询问l,r。

输出

一行一个数,表示每个询问的答案。

样例输入

5 5
2 1 0 2 1
3 3
2 3
2 4
1 2
3 5

样例输出

1
2
3
0
3


题解

莫队算法+分块,双倍经验题

首先必有如果某数大于等于n,那么它对答案没有任何贡献,所以可以把大于n的数看成n

然后类似于bzoj3809,将权值分块,查询时先找到第一个不满的块,再在块中查找。

注意:自然数:自然数集是全体非负整数组成的集合(包括0),所以分块要从0开始。

#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 200010
using namespace std;
struct data
{
int l , r , bl , id;
}a[N];
int w[N] , cnt[N] , num[510] , ans[N];
bool cmp(data a , data b)
{
return a.bl == b.bl ? a.r < b.r : a.bl < b.bl;
}
int main()
{
int n , m , si , i , j , lp = 1 , rp = 0;
scanf("%d%d" , &n , &m) , si = (int)sqrt(n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &w[i]);
if(w[i] > n) w[i] = n;
}
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &a[i].l , &a[i].r) , a[i].bl = (a[i].l - 1) / si , a[i].id = i;
sort(a + 1 , a + m + 1 , cmp);
n ++ , si = (int)sqrt(n);
for(i = 1 ; i <= m ; i ++ )
{
while(lp > a[i].l) lp -- , num[w[lp] / si] += (!cnt[w[lp]]) , cnt[w[lp]] ++ ;
while(rp < a[i].r) rp ++ , num[w[rp] / si] += (!cnt[w[rp]]) , cnt[w[rp]] ++ ;
while(lp < a[i].l) cnt[w[lp]] -- , num[w[lp] / si] -= (!cnt[w[lp]]) , lp ++ ;
while(rp > a[i].r) cnt[w[rp]] -- , num[w[rp] / si] -= (!cnt[w[rp]]) , rp -- ;
for(j = 0 ; j <= (n - 1) / si ; j ++ ) if(num[j] < si) break;
j *= si;
while(cnt[j]) j ++ ;
ans[a[i].id] = j;
}
for(i = 1 ; i <= m ; i ++ ) printf("%d\n" , ans[i]);
return 0;
}

【bzoj3585/bzoj3339】mex/Rmq Problem 莫队算法+分块的更多相关文章

  1. BZOJ 3339: Rmq Problem 莫队算法

    3339: Rmq Problem 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3339 Description n个数,m次询问l,r ...

  2. 【题解】P4137 Rmq Problem(莫队)

    [题解]P4137 Rmq Problem(莫队) 其实这道题根本就不用离散化! 因为显然有\(mex\)值是\(\le 2\times 10^5\)的,所以对于大于\(2\times 10^5\)的 ...

  3. 【bzoj3809/bzoj3236】Gty的二逼妹子序列/[Ahoi2013]作业 莫队算法+分块

    原文地址:http://www.cnblogs.com/GXZlegend/p/6805252.html bzoj3809 题目描述 Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了 ...

  4. 【BZOJ3585/3339】mex 莫队算法+分块

    [BZOJ3585]mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. ...

  5. 【BZOJ】2038: [2009国家集训队]小Z的袜子(hose)(组合计数+概率+莫队算法+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2038 学了下莫队,挺神的orzzzz 首先推公式的话很简单吧... 看的题解是从http://for ...

  6. XOR and Favorite Number(莫队算法+分块)

    E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...

  7. BZOJ 3809 Gty的二逼妹子序列 莫队算法+分块

    Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...

  8. 【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块

    [BZOJ3809]Gty的二逼妹子序列 Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b ...

  9. WHU-1551-Pairs(莫队算法+分块实现)

    Description Give you a sequence consisted of n numbers. You are required to answer how many pairs of ...

随机推荐

  1. 用dockers实现mysql主从同步

    首先要先看看当前的mysql的版本是什么,可以通过下面命令查看 mysql --version 最好是安装在docker中的mysql和你宿主机器中的mysql版本一致. 我的是mysql5.7.22 ...

  2. Eclipse使用的小技巧

    1.在右键new菜单栏中添加新建JSP文件 window->perspective->customize perspective->shortcuts->web->把JS ...

  3. 【Java】基础:常见修饰符(权限修饰符以及abstract、static、final等)与变量的描述

    1. 修饰符 public.protected.private.default abstract.static.final. abstract:抽象类.抽象方法 static:静态变量.静态方法.静态 ...

  4. ios统计流量代码

    #include <ifaddrs.h> #include <sys/socket.h> #include <net/if.h> 1.3G/GPRS流量统计 int ...

  5. Tomcat的部署+第一个Servlet

    Tomcat部署 1.下载tomcat,添加到eclipse 2.配置环境变量(path) 3.win+r,输入Startup(如果没用,就管理员启动命令) 或者找到tomcat安装包,在bin目录找 ...

  6. ES6笔记03-Set和Map数据结构

    ES6提供了新的数据结构Set.它类似于数组,但是成员的值都是唯一的,没有重复的值.Set本身是一个构造函数,用来生成Set数据结构. var s = new Set(); [2, 3, 5, 4, ...

  7. 获取点击li的当前索引

    获取点击li的当前索引 点击特定次序的li  展现特定的页面 $('.wgsb').find('.wangge_data_list li').click(function(){ var index=$ ...

  8. php如何连接mysql,并操纵后台服务器运作的过程

    PHP,一个嵌套的缩写名称,是英文超级文本预处理语言(PHP:Hypertext Preprocessor)的缩写.PHP 是一种 HTML 内嵌式的语言,PHP与微软的ASP颇有几分相似,都是一种在 ...

  9. echarts零基础快速入门

    第一步:得到这个dom对象.然后进行各种操作. var myChart = echarts.init(document.getElementById('item1')); 第二步:所有的配置项全部放在 ...

  10. python--Pandas(一)

    一.Pandas简介 1.Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一 ...