摘自:http://blog.csdn.net/yang_yulei/article/details/46337405

哈希树的理论基础

质数分辨定理

简单地说就是:n个不同的质数可以“分辨”的连续整数的个数和他们的乘积相等。“分辨”就是指这些连续的整数不可能有完全相同的余数序列。

(这个定理的证明详见:http://wenku.baidu.com/view/16b2c7abd1f34693daef3e58.html



例如:

从2起的连续质数,连续10个质数就可以分辨大约M(10) =2*3*5*7*11*13*17*19*23*29= 6464693230
个数,已经超过计算机中常用整数(32bit)的表达范围。连续100个质数就可以分辨大约M(100) = 4.711930 乘以10的219次方。

而按照目前的CPU水平,100次取余的整数除法操作几乎不算什么难事。在实际应用中,整体的操作速度往往取决于节点将关键字装载内存的次数和时间。一般
来说,装载的时间是由关键字的大小和硬件来决定的;在相同类型关键字和相同硬件条件下,实际的整体操作时间就主要取决于装载的次数。他们之间是一个成正比
的关系。

插入

我们选择质数分辨算法来建立一棵哈希树。

选择从2开始的连续质数来建立一个十层的哈希树。第一层结点为根结点,根结点下有2个结点;第二层的每个结点下有3个结点;依此类推,即每层结点的子节点数目为连续的质数。到第十层,每个结点下有29个结点。

同一结点中的子结点,从左到右代表不同的余数结果。

例如:第二层结点下有三个子节点。那么从左到右分别代表:除3余0,除3余1,除3余2.

对质数进行取余操作得到的余数决定了处理的路径。

结点结构:结点的关键字(在整个树中是唯一的),结点的数据对象,结点是否被占据的标志位(标志位为真时,关键字才被认为是有效的),和结点的子结点数组。

哈希树的节点结构

  1. struct Node
  2. {
  3. keyType      key ;
  4. ValueType    value ;
  5. bool         occupied ;    //用occupied来表示节点是否被占据。如果节点的关键字(key)有效,那么occupied应该设置位true,否则设置为false。
  6. struct Node* subNodes[1] ; //我们用subNodes[i]来表示节点的第i个子节点的地址。(此技术在跳跃表中有介绍,可翻看前面博客)
  7. } ;

(如果在建立当初就建立所有的节点,那么所消耗的计算时间和磁盘空间是巨大的。在实际使用当中,只需要初始化根节点就可以开始工作。子节点的建立是在有更多的数据进入到哈希树中的时候建立的。因此可以说哈希树和其他树一样是一个动态结构。)

下面我们以随机的10个数的插入为例,来图解HashTree的插入过程,这个史上最清晰的图解,你一定能看的明白^_^



有读者可能有疑问,如果一直冲突下去怎么办?首先,若关键字是整型,我们的10层哈希树完全可以分辨出来它们,这是质数分辨算法决定的。

(我们其实也可以把所有的键-值节点放在哈希树的第10层叶节点处,这第10层的满节点数就包含了所有的整数个数,但是如果这样处理的话,所有的非叶子节点作为键-值节点的索引,这样使树结构庞大,浪费空间)

【这里没有说的太清楚,此图是以2开始的连续质数创建的,即:从上到下的层级中的每个节点中的子树个数为2、3、5、7、11、13、17、19、23、29。第一层中的每个节点的子树个数为2,第二层中的每个节点子树个数为5.。。。。

上图中的子树上的数字,是其父节点的子树指针数组的索引值】

查找

哈希树的节点查找过程和节点插入过程类似,就是对关键字用质数序列取余,根据余数确定下一节点的分叉路径,直到找到目标节点。

如上图,最小”哈希树(HashTree)在从4G个对象中找出所匹配的对象,比较次数不超过10次。也就是说:最多属于O(10)。在实际应用中,调整
了质数的范围,使得比较次数一般不超过5次。也就是说:最多属于O(5)。因此可以根据自身需要在时间和空间上寻求一个平衡点。

删除

哈希树的节点删除过程也很简单,哈希树在删除的时候,并不做任何结构调整。

只是先查到到要删除的节点,然后把此节点的“占位标记”置为false即可(即表示此节点为空节点,但并不进行物理删除)。

优点

1、结构简单

2、查找迅速

3、结构不变

从删除算法中可以看出,哈希树在删除的时候,并不做任何结构调整

缺点

非排序性

哈希树可以广泛应用于那些需要对大容量数据进行快速匹配操作的地方。例如:数据库索引系统、短信息中的收条匹配、大量号码路由匹配、信息过滤匹配。哈希树不需要额外的平衡和防止退化的操作,效率十分理想。

HashTree(哈希树) ——和trie类似,只是将字符换成了质数,sphinx用到了???的更多相关文章

  1. 012-数据结构-树形结构-哈希树[hashtree]、字典树[trietree]、后缀树

    一.哈希树概述 1.1..其他树背景 二叉排序树,平衡二叉树,红黑树等二叉排序树.在大数据量时树高很深,我们不断向下找寻值时会比较很多次.二叉排序树自身是有顺序结构的,每个结点除最小结点和最大结点外都 ...

  2. 查找——图文翔解HashTree(哈希树)

    引 在各种数据结构(线性表.树等)中,记录在结构中的相对位置是随机的.因此在机构中查找记录的时须要进行一系列和keyword的比較.这一类的查找方法建立在"比較"的基础上.查找的效 ...

  3. 字典树(Trie树)

    1. trie基础 (1) 是什么? Trie,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种. (2) 性质 根节点不包含字符,除根节点外每一个节点都只包含一个字符 从根节点到某一节点,路 ...

  4. 字典树(Trie)的java实现

    一.定义 字典树又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种.典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优点是:利用 ...

  5. 算法笔记--字典树(trie 树)&& ac自动机 && 可持久化trie

    字典树 简介:字典树,又称单词查找树,Trie树,是一种树形结构,是哈希树的变种. 优点:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较. 性质:根节点不包含字符,除根节点外每一个 ...

  6. [BinaryTree] AVL树、红黑树、B/B+树和Trie树的比较

    转自:AVL树.红黑树.B/B+树和Trie树的比较 AVL树 最早的平衡二叉树之一.AVL是一种高度平衡的二叉树,所以通常的结果是,维护这种高度平衡所付出的代价比从中获得的效率收益还大,故而实际的应 ...

  7. 【python】Leetcode每日一题-前缀树(Trie)

    [python]Leetcode每日一题-前缀树(Trie) [题目描述] Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的 ...

  8. 【BZOJ4477】[JSOI2015]字符串树(Trie树)

    [BZOJ4477][JSOI2015]字符串树(Trie树) 题面 BZOJ 题解 对于每个点维护其到根节点的所有字符串构成的\(Trie\),显然可持久化一下就很好写了. 然后每次询问就是\(u+ ...

  9. 18B树、B++树和Trie树

    B树.B++树和Trie树 B树 定义:一个非空M元(也称M阶)B树(R.Bayer,1970年) 满足下列条件: 1)每个结点含有m个元素a1<a2<…<am.含有m个元素的结点有 ...

随机推荐

  1. webpack react基础配置二 热加载

    用到 webpack-dev-server  先安装,注意 装到全局 还是本项目我也没注意  因为之前一直报错,有很小可能是安装到本地解决了,或者是我网络问题: 装到全局:$ npm install ...

  2. asp.net 微信开发失效汇总

    1.验证控件 在Iphone 5以上版本不兼容(改为js验证)

  3. socket初始

    一.概述 socket,套接字. 套接字是一种源IP地址和目的IP地址以及源端口号和目的端口号的组合.网络化的应用程序在开始任何通讯之前都必须要创建套接字.就像电话的插口一样,没有它就没办法通讯.   ...

  4. informix(懒得通用)

    1.create view  444(...)  as select ...from... 2.insert into select.......union  select     不支持 请分开写 ...

  5. Duiib 创建不规则窗口(转载)

    方法一: 转载:http://blog.csdn.net/chenlycly/article/details/46447297 转载:http://blog.csdn.net/harvic880925 ...

  6. Obtaining Query Count Without executing a Query in Oracle D2k

    Obtaining Query Count Without executing a Query in Oracle D2k Obtaining a count of records that will ...

  7. 微信小程序-设备

    网络状态: wx.getNetworkType(OBJECT) 获取网络类型. OBJECT参数说明: wx.getNetworkType({ success: function(res) { var ...

  8. linux文件系统,文件的分类

    从硬盘的构造可知,每次对物理磁盘的访问的最小单位是一个盘面上的一个磁道的扇区,即使用户需要读取一个字节的数据,实际读写时都是先把该字节所在的扇区读读入到内存,然后再访问. 1.普通文件 2.目录文件 ...

  9. Java开发中经典的小实例-(输入三个数字判断三角形类型)

    import java.util.Scanner;public class threeTest {    public static void main(String[] args) {       ...

  10. [Linux]cmd to use

    0x01 Linux Perfermance Analysis in 60s 1> uptime ---load averages 2> dmesg -r | tail ---kernel ...