hdoj 1869 六度分离
Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
#include <stdio.h>
#define INF 0x3f3f3f3f
#include <algorithm>
using namespace std;
int n, m;
int dis[], vis[], cost[][];
//dis用来记录除此人外他是否与其他人认识,vis用来标记某人是否被访问过,cost用来记录两个人之间是否认识
int min(int x, int y)//求两个整数之间较小的数
{
return x < y ? x : y;
}
int cmp(int x, int y)//自定义降序排列
{
return x > y;
}
int dijkstra(int i)//利用dijkstra方法求两个人之间的距离,i为源点
{
int u, v, flag = ;
for(u = ; u < n; u++)//将所有点到远点的距离设为无穷大
{
dis[u] = INF;
vis[u] = ;//标记所有点都未访问
}
dis[i] = ;//源点到自身的距离为0
while(true)
{
v = -;
for(u = ; u < n; u++)
if(!vis[u] && (v == - || dis[v] > dis[u]))//求未曾访问过且距离源点最近的人(即认识的人)
v = u;
if(v == -)//如果v=-1,表明无人认识源点或是所有的点都被访问过,就跳出循环
break;
vis[v] = ;//标记据源点最近的人
for(u = ; u < n; u++)//更新权值,即各点到源点的距离
dis[u] = min(dis[u], dis[v] + cost[v][u]);
}
sort(dis, dis+n, cmp);//对所有点到源点的距离进行降序排列
if(dis[] > )//只要距离最大的距离大于7,即六度分离定理不成立
flag = ;//用flag记录结果
return flag;
}
int main()
{
int i, j;
while(~scanf("%d%d", &n, &m))
{
int a, b;
for(i = ; i < n; i++)//对cost进行初始化
for(j = ; j < n; j++)
cost[i][j] = INF;
while(m--)
{
scanf("%d%d", &a, &b);
cost[a][b] = cost[b][a] = ; //若两个人认识,则将两个人之间的距离设为1,否则为无穷大
}
for(i = ; i < n; i++)
{
if(!dijkstra(i))//求任意一个人到其他所有人的距离,只要有大于7的,就输出结果,跳出循环
{
printf("No\n");
break;
}
}
if(i == n)//如果i=n证明任何两个人之间的距离都不会超过7,输出Yes
printf("Yes\n");
}
return ;
}
spfa代码:
#include <stdio.h>
#include <string.h>
#include <queue>
# define INF 0x3f3f3f3f
#define N 110
#define M 450
using namespace std; struct node
{
int from, to, val, next;
};
node edge[M];
int n, m, cnt;
int dis[N], vis[N], head[N];
void add(int x, int y)
{
node e = {x, y, , head[x]};
edge[cnt] = e;
head[x] = cnt++;
}
void SPFA(int s)
{
queue<int>q;
memset(vis, , sizeof(vis));
memset(dis, INF, sizeof(dis));
q.push(s);
vis[s] = ;
dis[s] = ;
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = ;
for(int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if(dis[v] > dis[u] + edge[i].val)
{
dis[v] = dis[u] + edge[i].val;
if(!vis[v])
{
vis[v] = ;
q.push(v);
}
}
}
}
}
int main()
{
while(~scanf("%d%d", &n, &m))
{
cnt = ;
int flag = ;
memset(head, -, sizeof(head));
while(m--)
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
add(b, a);
}
for(int i = ; i < n; i++)
{
SPFA(i);
for(int j = ; j < n; j++)
{
if(dis[j] > )
{
flag = ;
break;
}
}
}
if(flag)
printf("Yes\n");
else
printf("No\n");
}
return ;
}
floyd代码:
#include <stdio.h>
#define inf 0x3f3f3f3f
int n, m, dis[][];
void floyd()
{
int i, j, k;
for(i = ; i < n; i++)
for(j = ; j < n; j++)
for(k = ; k < n; k++)
{
if(dis[j][k] > dis[j][i] + dis[i][k])
dis[j][k] = dis[j][i] + dis[i][k];
}
}
int main()
{
int i, j;
while(~scanf("%d%d", &n, &m))
{
for(i = ; i < n; i++)
for(j = ; j < n; j++)
{
if(i == j)
dis[i][j] = ;
else
dis[i][j] = inf;
}
while(m--)
{
int a, b;
scanf("%d%d", &a, &b);
dis[a][b] = dis[b][a] = ;
}
floyd();
int flag = ;
for(i = ; i < n; i++)
{
for(j = ; j < n; j++)
if(dis[i][j] > )
{
flag = ;
break;
}
if(!flag)
{
printf("No\n");
break;
}
}
if(flag)
printf("Yes\n");
}
return ;
}
hdoj 1869 六度分离的更多相关文章
- hdoj 1869 六度分离【最短路径求两两边之间最长边】
六度分离 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- ACM: HDU 1869 六度分离-Dijkstra算法
HDU 1869六度分离 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Descri ...
- hdu 1869 六度分离(最短路floyd)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1869 六度分离 Time Limit: 5000/1000 MS (Java/Others) M ...
- HDU 1869 六度分离
六度分离 http://acm.hdu.edu.cn/showproblem.php?pid=1869 Problem Description 1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一 ...
- HDU ACM 1869 六度分离(Floyd)
六度分离 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- HDOJ 1869
#include<stdio.h> ][]; #define inf 0xffffff; void floyed(int n) { int i,j,k; ;k<n;k++) { ;i ...
- HDU 1869 六度分离 最短路
解题报告: 1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人, ...
- HDU - 1869 六度分离 Floyd多源最短路
六度分离 1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即 ...
- HDU 1869 六度分离【floyd】
题意:给出n个人,m个关系,问是否满足任意两个人之间的距离通过6个人就可以连接 用floyd就可以了,注意距离是大于7 #include<iostream> #include<cst ...
随机推荐
- oracle 字符串
oracle获取字符串长度函数length()和hengthb() lengthb(string)计算string所占的字节长度:返回字符串的长度,单位是字节 length(string)计算stri ...
- DIOCP之编写第一个应用程序(二)
构建client界面: 构建界面要比写代码更难爱,不是专业UI设计太丑,先有个界面,好写代码,客户端代码与界面设计思想:界面与数据之间分离处理,不能要接收数据的地方写代码,不然以后修改程序会死人的.
- Appium学习路—Android定位元素与操作
一.常用识别元素的工具 uiautomator:Android SDK自带的一个工具,在tools目录下 monitor:Android SDK自带的一个工具,在tools目录下 Appium Ins ...
- malloc 函数工作机制(转)
malloc()工作机制 malloc函数的实质体现在,它有一个将可用的内存块连接为一个长长的列表的所谓空闲链表.调用malloc函数时,它沿连接表寻找一个大到足以满足用户请求所需要的内存块.然后,将 ...
- openvpn安装
1,wget http://swupdate.openvpn.org/as/openvpn-as-2.0.10-CentOS7.x86_64.rpm 2,passwd openvpn
- 转:union和union all的区别
Union因为要进行重复值扫描,所以效率低.如果合并没有刻意要删除重复行,那么就使用Union All 两个要联合的SQL语句 字段个数必须一样,而且字段类型要“相容”(一致): 如果我们需要将两个 ...
- Light OJ 1029- Civil and Evil Engineer (图论-最小生成树)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1029 题目大意:一个发电站,给n座房子供电, 任意房子之间有电线直接或者间接相 ...
- linux 如何显示一个文件的某几行(中间几行)
linux 如何显示一个文件的某几行(中间几行) [一]从第3000行开始,显示1000行.即显示3000~3999行 cat filename | tail -n +3000 | head -n 1 ...
- jQuery Mobile 表单基础
jQuery Mobile 会自动为 HTML 表单添加优异的便于触控的外观. jQuery Mobile 表单结构 jQuery Mobile 使用 CSS 来设置 HTML 表单元素的样式,以使其 ...
- 炼数成金(dataguru)IT技能修炼
2016我定的目标就是要走出舒适区,进入学习区!为了少走弯路,节约学习的成本和时间,我选择了dataguru.看到心仪的课程毫不犹豫的就报了名. 分享了炼数成金邀请码,使用邀请码报名课程可以减免50% ...