json数据处理实战:Kafka+Flume+Morphline+Solr+Hue数据组合索引
背景:Kafka消息总线的建成,使各个系统的数据得以在kafka节点中汇聚,接下来面临的任务是最大化数据的价值,让数据“慧”说话。
环境准备:
Kafka服务器*3。
CDH 5.8.3服务器*3,安装Flume,Solr,Hue,HDFS,Zookeeper服务。
Flume提供了可扩展的实时数据传输通道,Morphline提供了轻量级的ETL功能,SolrCloud+Hue提供了高性能搜索引擎和多样的数据展现形式。
12.20补充:(Hue的另外一种代替方式:Banana。)
2017.3.28补充:如果不使用CDH,而是使用开源的Flume+Solr=>纪录:Solr6.4.2+Flume1.7.0 +kafka集成
一.环境安装(略)
二.修改CDH默认配置:
1.在Flume配置界面配置Flume依赖Solr。

2.在Solr配置界面配置Solr使用Zookeeper存储配置文件,使用HDFS存储索引文件。

3.在Hue配置界面配置Hue依赖Solr

4.配置Hue界面可以被外网访问。

三.按场景配置各CDH服务及开发代码。
Kafka Topic: eventCount
Topic数据格式:
{
"timestamp": "1481077173000",
"accountName": "旺小宝",
"tagNames": [
"incoming"
],
"account": "WXB",
"eventType": "phone",
"eventTags": [
{
"value": 1,
"name": "incoming"
}
]
}
1.Solr创建对应Collection。
1)登录任意CDH节点。生成collection配置文件骨架。
$ solrctl instancedir --generate $HOME/solr_configs
2)找到文件夹中的schema.xml文件,修改collection的schema。
第一步:修改field(先不要动type和dynamicField这些)。schema.xml中预定义了很多field,field对应的是json中需要被索引的字段。除了name=id,_root_,_version_不能去掉之外,其他的field可以去掉。
(Notice:json中的timestamp对应的是下面的eventTime,而下面的timestamp是flume接受kafka数据的时间。这是通过Morphline配置实现的转换)
<field name="id" type="string" indexed="true" stored="true" required="true" multiValued="false" /> <!-- points to the root document of a block of nested documents. Required for nested
document support, may be removed otherwise
-->
<field name="_root_" type="string" indexed="true" stored="false"/>
<field name="account" type="string" indexed="true" stored="true"/>
<field name="accountName" type="string" indexed="true" stored="true"/>
<field name="subaccount" type="string" indexed="true" stored="true"/>
<field name="subaccountName" type="string" indexed="true" stored="true"/>
<field name="eventTime" type="tlong" indexed="false" stored="true"/>
<field name="eventType" type="string" indexed="true" stored="true"/>
<field name="eventTags" type="string" indexed="true" stored="true" multiValued="true"/>
<field name="_attachment_body" type="string" indexed="false" stored="true"/>
<field name="timestamp" type="tlong" indexed="false" stored="true"/>
<field name="_version_" type="long" indexed="true" stored="true"/>
第二步:去掉所有copy field。
第三步:添加动态字段dynamicFiled。
<dynamicField name="tws_*" type="text_ws" indexed="true" stored="true" multiValued="true"/>
3) 上传配置,创建collection
$ solrctl instancedir --create event_count_records solr_configs
$ solrctl collection --create event_count_records -s 3 -c event_count_records
2.Flume配置
创建一个新的角色组kafka2solr,修改代理名称为kafka2solr,并为该角色组分配服务器。
# 配置 source channel sink 的名字
kafka2solr.sources = source_from_kafka
kafka2solr.channels = mem_channel
kafka2solr.sinks = solrSink # 配置Source类别为kafka
kafka2solr.sources.source_from_kafka.type = org.apache.flume.source.kafka.KafkaSource
kafka2solr.sources.source_from_kafka.channels = mem_channel
kafka2solr.sources.source_from_kafka.batchSize = 100
kafka2solr.sources.source_from_kafka.kafka.bootstrap.servers= kafkanode0:9092,kafkanode1:9092,kafkanode2:9092
kafka2solr.sources.source_from_kafka.kafka.topics = eventCount
kafka2solr.sources.source_from_kafka.kafka.consumer.group.id = flume_solr_caller
kafka2solr.sources.source_from_kafka.kafka.consumer.auto.offset.reset=latest #配置channel type为memory,通常生产环境中设置为file或者直接用kafka作为channel
kafka2solr.channels.mem_channel.type = memory
kafka2solr.channels.mem_channel.keep-alive = 60 # Other config values specific to each type of channel(sink or source)
# can be defined as well
# In this case, it specifies the capacity of the memory channel
kafka2solr.channels.mem_channel.capacity = 10000
kafka2solr.channels.mem_channel.transactionCapacity = 3000 # 配置sink到solr,并使用morphline转换数据
kafka2solr.sinks.solrSink.type = org.apache.flume.sink.solr.morphline.MorphlineSolrSink
kafka2solr.sinks.solrSink.channel = mem_channel
kafka2solr.sinks.solrSink.morphlineFile = morphlines.conf
kafka2solr.sinks.solrSink.morphlineId=morphline1
kafka2solr.sinks.solrSink.isIgnoringRecoverableExceptions=true
3.Flume-NG的Solr接收器配置
SOLR_LOCATOR : {
# Name of solr collection
collection : event_count_records
# ZooKeeper ensemble
#CDH的专有写法,开源版本不支持。
zkHost : "$ZK_HOST"
} morphlines : [
{
id : morphline1
importCommands : ["org.kitesdk.**", "org.apache.solr.**"] commands : [
{
#Flume传过来的kafka的json数据是用二进制流的形式,需要先读取json
readJson{}
} {
#读出来的json字段必须转换成filed才能被solr索引到
extractJsonPaths {
flatten:true
paths:{
account:/account
accountName:/accountName
subaccount:/subaccount
subaccountName:/subaccountName
eventTime:/timestamp
eventType:/eventType
eventTags:"/eventTags[]/name"
#按分钟存timestamp
eventTimeInMinute_tdt:/timestamp
#按小时存timestamp
eventTimeInHour_tdt:/timestamp
#按天存timestamp
eventTimeInDay_tdt:/timestamp
#_tdt后缀会被动态识别为日期类型的索引字段
#按不同时间间隔存索引以增加查询性能
} }
} #转换long型时间为Date格式
{convertTimestamp {
field : eventTimeInMinute_tdt
inputFormats : ["unixTimeInMillis"]
inputTimezone : UTC
outputFormat : "yyyy-MM-dd'T'HH:mm:ss.SSS'Z/MINUTE'"
outputTimezone : Asia/Shanghai
}} {convertTimestamp {
field : eventTimeInHour_tdt
inputFormats : ["unixTimeInMillis"]
inputTimezone : UTC
outputFormat : "yyyy-MM-dd'T'HH:mm:ss.SSS'Z/HOUR'"
outputTimezone : Asia/Shanghai
}}
{convertTimestamp {
field : eventTimeInDay_tdt
inputFormats : ["unixTimeInMillis"]
inputTimezone : UTC
outputFormat : "yyyy-MM-dd'T'HH:mm:ss.SSS'Z/DAY'"
outputTimezone : Asia/Shanghai
}} #kafka中的json数据传到flume中时会被放入_attachment_body字段,readJson后会变成JsonNode对象,需要toString之后才能保存
{toString { field : _attachment_body }} #为每一条记录生成一个UUID
{generateUUID {
field : id
}} #对未定义的Solr字段加tws前缀,根据schema.xml中定义的tws_*为text_ws类型,会动态未未定义的字段建索引。
{
sanitizeUnknownSolrFields {
# Location from which to fetch Solr schema
solrLocator : ${SOLR_LOCATOR}
renameToPrefix:"tws_"
}
} #将数据导入到solr中
{loadSolr {solrLocator : ${SOLR_LOCATOR}}}
]
}
]
重启被影响的Flume节点,数据开始导入solr。
3.通过Hue查询Solr中的数据。
(作者卡尔:http://www.cnblogs.com/arli/p/6158771.html )
json数据处理实战:Kafka+Flume+Morphline+Solr+Hue数据组合索引的更多相关文章
- Cloudera5.8.3:Flume+Morphline+Solr开发小技巧
1.Flume和Morphline添加日志打印 log4j.logger.org.apache.flume.sink.solr=DEBUG log4j.logger.org.kitesdk.morph ...
- python接口自动化(十九)--Json 数据处理---实战(详解)
简介 上一篇说了关于json数据处理,是为了断言方便,这篇就带各位小伙伴实战一下.首先捋一下思路,然后根据思路一步一步的去实现和实战,不要一开始就盲目的动手和无头苍蝇一样到处乱撞,撞得头破血流后而放弃 ...
- Spark SQL JSON数据处理
背景 这一篇可以说是“Hive JSON数据处理的一点探索”的兄弟篇. 平台为了加速即席查询的分析效率,在我们的Hadoop集群上安装部署了Spark Server,并且与我们的Hive数据仓 ...
- Kafka实战-Flume到Kafka
1.概述 前面给大家介绍了整个Kafka项目的开发流程,今天给大家分享Kafka如何获取数据源,即Kafka生产数据.下面是今天要分享的目录: 数据来源 Flume到Kafka 数据源加载 预览 下面 ...
- 【转】Kafka实战-Flume到Kafka
Kafka实战-Flume到Kafka Kafka 2015-07-03 08:46:24 发布 您的评价: 0.0 收藏 2收藏 1.概述 前面给大家介绍了整个Kafka ...
- Kafka实战-Flume到Kafka (转)
原文链接:Kafka实战-Flume到Kafka 1.概述 前面给大家介绍了整个Kafka项目的开发流程,今天给大家分享Kafka如何获取数据源,即Kafka生产数据.下面是今天要分享的目录: 数据来 ...
- How-to: Do Real-Time Log Analytics with Apache Kafka, Cloudera Search, and Hue
Cloudera recently announced formal support for Apache Kafka. This simple use case illustrates how to ...
- MySQL数据实时增量同步到Kafka - Flume
转载自:https://www.cnblogs.com/yucy/p/7845105.html MySQL数据实时增量同步到Kafka - Flume 写在前面的话 需求,将MySQL里的数据实时 ...
- JSON数据处理框架Jackson精解第一篇-序列化与反序列化核心用法
Jackson是Spring Boot默认的JSON数据处理框架,但是其并不依赖于任何的Spring 库.有的小伙伴以为Jackson只能在Spring框架内使用,其实不是的,没有这种限制.它提供了很 ...
随机推荐
- 关于java jni编译javac javah的问题
这篇文章是在安卓教程网http://android.662p.com那边分享过来的,文章说得还不错的,希望能够帮到大家的学习. javac 编译class文件命令,需要注意的是当类B中import类 ...
- [转]JavaScript程序编码规范
原文:http://javascript.crockford.com/code.html 作者:Douglas Crockford 译文:http://www.yeeyan.com/articles/ ...
- Mybatis if test中字符串比较
<if test=" name=='你好' "> <if> 这样会有问题,换成 <if test=' name=="你好" '&g ...
- 轻量级权限管理系统(renren-security)
renren-security是一个轻量级权限管理系统,其核心设计目标是开发迅速.学习简单.轻量级.易扩展.使用renren-security搭建项目,只需编写30%左右代码,其余的代码交给系统自动生 ...
- C语言关键字、标识符和注释
一.关键字 C语言提供的有特殊含义的符号,共32个. 在Xcode中关键字全部高亮显示,关键字全部都为小写.如return.int等. 二.标识符 定义:标识符是程序员在程序中自定义的一些符号和名称. ...
- PHP curl超时问题
今天调试一个非常老的代码时 发现nginx服务器超时 改了下nginx配置 发现是后台脚本一直等待 排查到最后发现是curl 超时引起的等待 具体解决方案: curl_setopt( $this ...
- CentOS 6.5/6.6 安装(install)mysql 5.7 最完整版教程
Step1: 检测系统是否自带安装mysql # yum list installed | grep mysql Step2: 删除系统自带的mysql及其依赖命令: # yum -y remove ...
- ASP.NET MVC Model绑定的简单应用
Model绑定是 MVC 框架根据 HTTP 请求数据创建 .NET 对象的一个过程. 一.简单类型 1.单一值
- 为什么URL中的中文需要Encode两次?
在URL中传参的时候常常需要传入中文,这个时候就需要对中文参数进行编码,即URLEncode.但是,常常是Encode两次,而不是一次,为什么呢? 首先要知道,tomcat会自动解码一次: 这样的话, ...
- SharePoint 2013 – Workflow Manager 1.0 offline download
[http://sharepointdeal.wordpress.com/2013/03/13/sharepoint-2013-workflow-manager-1-0-offline-downloa ...