今天开始学模式识别与机器学习(PRML),章节5.1,Neural Networks神经网络-前向网络。
今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络。
话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完。其实很多章节都看了,不过还没写出来,先从第5章开始吧,第2-4章比较基础,以后再补!基本是笔记+翻译,主要是自己写一下以后好翻阅。
PRML第5章介绍了神经网络neural network,是最近非常火的deep learning的基础,值得好好看一看。
第5章 Neural Networks
在第3章和第4章,我们已经学过线性的回归和分类模型,这些模型由固定的基函数(basis functions)的线性组合组成。这样的模型具有有用的解析和计算特性,但是因为维度灾难(the curse of dimensionality)(即高维数据)的问题限制了它们的实际的适用性。为了把这些模型应用在大数据的问题中,我们必须根据数据来调整这些基函数。
在第七章中会讨论SVM,是一个非常著名和有效的分类方法。SVM有其独特的方法理论,并且其一个重要的优点是:虽然涉及非线性优化,但是SVM本身的目标函数依然是convex的。在本章中不具体展开,第七章中有详述。
另外一个办法是虽然提前固定基函数的数量,但是允许它们在在训练的过程中调整其参数,也就是说基函数是可以调整的。在模式识别领域,该方法最为典型的算法是本章节将会讨论 的前向神经网络(feed-forward neural network,后面简称NN),或者称为多层感知器(multilayer perceptron)。(注:这里多层模型是连续的,如sigmoid函数,而perceptron方法原本是不连续的;perceptron方法在PRML书中没有介绍,后面根据其他的资料单独写一篇)。很多情况下,NN训练的模型相比具有相同泛化能力的SVM模型更紧凑(注:我理解是参数更少),因此跟容易评估,但是代价是NN的基函数不再是训练参数的convex函数。在实际中,在训练中花费大量计算资源以得到紧凑的模型,来快速处理新数据的情况是可以接受的。
接下来我们会看到,为了得到神经网络的参数,我们本质上是做了一个最大似然估计,其中涉及非线性优化问题。这需要对log似然函数针对参数求导数,我们后面会讲一下误差反向传播算法(error backpropagation,BP),以及BP算法的一些扩展方法。
5.1 Feed-forward Network Functions
在第3章和第4章中通论的线性模型,是基于固定的基函数的线性组合,形式为:
其中,f()在分类问题中是一个非线性的激励函数,而在回归模型中是单位矩阵identity。我们的目标是把上面的模型中的基函数变得依赖于参数,并且在训练的时候这些参数以及上面的wj都是可调整的。基函数的形式自然有很多种,神经网络的基函数采用和(5.1)相同形式,因此每个基函数本事就是一个关于input线性组合的非线性函数,线性组合中的参数是可以调整的参数。这就是基本的神经网络的思想,由一系列函数转换组成:首先我们构造针对输入变量
的M个线性函数
其中j=1,…,M,上标(1)表示参数是神经网络第一层的参数(input不算层)。我们称参数为权重weights,而参数
是截距biases。
称为激励(activation),会通过一个可导的非线性激励函数h()转换成:
这些M个函数值就是(5.1)中的基函数的输出,在神经网络模型中,称之为隐含层单元(hidden units)。非线性激励函数h()通常的选择是sigmoid函数或者是tanh函数。根据(5.1),这些值会再一次线性组合成output单元的激励值,
其中k=1,…,K,K是output单元数量。这个转换是神经网络的第二层,是bias参数。最终,这些output单元的激励值会再由合适的激励函数转换成合适的最终输出
。和上面的提到的类似,如果是要做回归问题,激励函数我们选择identity,即
;如果是做多个2分类问题,我们采用logistic
sigmoid function:
如果是多个类别的分类问题,我们采用softmax函数,见PRML书公式(4.62)。
于是,我们把所有阶段都组合起来,可以得到总体的神经网络函数(采用sigmoid output单元,两层网络,如下面图5.1):
因此,神经网络模型就是一个非线性函数,从输入的变量集合到输出的变量集合
,并且由可调整的参数向量w来控制。网络的结构可以见图5.1,整个网络是向前传播的。
我们可以专门增加x0=1和z0=1两个变量输入,这样可以把bias(偏移、截距)项合并到累加里面,简化了表达,因此可以得到:
以及:
下面的推导会用(5.9)的形式。如果看过第四章关于感知机(perception)的介绍,就会发现上面的形式就相当于用了两层的感知机模型,也是因为这样,神经网络模型也被称为多层感知机(the multilayer perceptron, or MLP)模型。区别是感知机模型采用输出0/1的步长函数(step-function),而NN采用连续的如sigmoid这样的非线性函数在中间的隐藏层单元,说明NN对于参数是可导的,这一点在NN模型的训练中很重要。
如果隐层单元的激励函数都是采用线性的,那么不管连续几层,最终模型还是一个线性模型。而且如果隐层单元比输入单元或者输出单元少的话,那么就会有信息损失,类似于在隐层做了一次数据降维。目前来看,很少有人关注多层线性单元的神经网络模型。上面图5.1是一个最为典型的NN模型结构,它可以很容易的得到拓展——继续把输出层作为隐层,并增加新的层次,采用和之前一样的函数传递方法。业界在称呼NN模型的层次上有一些统一,有些人把图5.1叫做3层网络,而在本书中更推荐这个模型为2层,因为参数可调的层只有2层。
另外一种对模型的泛化方法是像图5.2这样,input的节点可以直接连接到output,并不一定需要一层一层传递。(注:这样的NN结构更广义,优化的时候BP也一样可以应付,但是是怎么产生这些越层连接的呢?这一点书中没有展开,不知道这样的模型在深度网络结构中有没有应用呢?有同学看到一定要留言告知哈~)
另外一个很重要的性质,NN模型可以是稀疏的,事实上大脑也是这样的,不是所有的神经元都是活跃的,只有非常少的一小部分会活跃,不同层的神经元之间也不可能是全连接的。后面再5.5.6节中,我们将看到卷积神经网络采用的稀疏网络结构的例子。
我们自然可以设计出更复杂的网络结构,不过一般来说我们都限定网络结构为前向网络,也就是说不存在封闭的有向环,可以见图5.2表示的那样,每一个隐层单元或者是输出单元可以通过下面计算得到:
于是,当有输入时,网络中的所有单元都会逐步被影响进而激活(也有可能不激活)。神经网络模型有很强的近似拟合功能,因此也被称为universal approximators.
事实上两层的NN模型就可以拟合任意function,只要隐层单元足够多以及参数训练的足够好。下面的图5.3说明了NN模型的拟合能力。解释请看图左边的描述。
5.1.1 权值空间的对称性
这是前向网络一个有趣的性质,比如我们来看图5.1这样的典型两层网络,考察一个隐层单元,如果我们把它的输入参数的符号全部取反,以tanh函数为例,我们会得到相反的激励函数值,即tanh(−a) = −tanh(a)。然后把这个单元所有的输出连接权重也都取反,我们又可以得到相同的output输出,也就是说,实际上有两组不同的权值取值可以得到相同的output输出。如果有M个隐层单元,实际上有2M种等价的参数取值方案。
另外,如果我们把隐层的两个单元的输入输出权重互相间调换一下,那么整个网络最终output是一样的,也就是说任何一种权重的取值组合是所有M!中的一种。可见上面这样的神经网络居然有M!2M的权值对称性可能。这样的性质在很多激励函数都是有的,但是一般来说我们很少关心这一点。
今天开始学模式识别与机器学习(PRML),章节5.1,Neural Networks神经网络-前向网络。的更多相关文章
- 今天开始学习模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络。
话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完.其实很多章节都看了,不过还没写出来,先从第5章开始吧, ...
- 今天开始学Pattern Recognition and Machine Learning (PRML),章节5.2-5.3,Neural Networks神经网络训练(BP算法)
转载请注明出处:http://www.cnblogs.com/xbinworld/p/4265530.html 这一篇是整个第五章的精华了,会重点介绍一下Neural Networks的训练方法——反 ...
- 【原】Coursera—Andrew Ng机器学习—Week 4 习题—Neural Networks 神经网络
[1] Answer:C [2] Answer:D 第二层要输出四个元素a1 a2 a3 a4.输入x有两个,加一个x0是三个.所以是4 * 3 [3] Answer:C [4] Answer:C [ ...
- Stanford机器学习---第五讲. 神经网络的学习 Neural Networks learning
原文 http://blog.csdn.net/abcjennifer/article/details/7758797 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Stanford机器学习---第四讲. 神经网络的表示 Neural Networks representation
原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- paper 95:《模式识别和机器学习》资源
Bishop的<模式识别和机器学习>是该领域的经典教材,本文搜罗了有关的教程和读书笔记,供对比学习之用,主要搜索的资源包括CSDN:http://download.csdn.net/sea ...
- Bishop的大作《模式识别与机器学习》Ready to read!
久仰Bishop的大作“Pattern Recognition and Machine Learning”已久,在我的硬盘里已经驻扎一年有余,怎奈惧其页数浩瀚,始终未敢入手.近日看文献,屡屡引用之.不 ...
- 模式识别与机器学习—bagging与boosting
声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. (1)在介绍Bagging和Boosting算法之前,首先要简 ...
- PRML读书会第五章 Neural Networks(神经网络、BP误差后向传播链式求导法则、正则化、卷积网络)
主讲人 网神 (新浪微博:@豆角茄子麻酱凉面) 网神(66707180) 18:55:06 那我们开始了啊,前面第3,4章讲了回归和分类问题,他们应用的主要限制是维度灾难问题.今天的第5章神经网络的内 ...
随机推荐
- std::string::find() 和 std::string::npos
npos是一个常数,用来表示不存在的位置,string::npos代表字符串到头了结束了. int idx = str.find("abc");if (idx == strin ...
- memchr函数
函数原型:extern void *memchr(void *str, char ch, unsigned count) 参数说明:从str所指内存区域的前count个字节查找字符ch. ...
- Leetcode 703. 数据流中的第K大元素
1.题目要求 设计一个找到数据流中第K大元素的类(class).注意是排序后的第K大元素,不是第K个不同的元素. 你的 KthLargest 类需要一个同时接收整数 k 和整数数组nums 的构造器, ...
- lightoj 1341
lightoj 1341 Aladdin and the Flying Carpet 链接:http://lightoj.com/volume_showproblem.php?problem=134 ...
- HDU 4258 斜率优化dp
Covered Walkway Time Limit: 30000/10000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- 从samsung提供内核进行移植
1.尝试编译分析结果 配置编译下载尝试 (1)检查Makefile中ARCH和CROSS_COMPILE(2)make xx_defconfig(3)make menuconfig(4)make -j ...
- liunx环境下安装mysql数据库2
mysql的安装和配置[1]解压mysql安装包,进入mysql目录,添加用户,并安装,将权限授权给mysql用户
- 数据结构&图论:图
在这里对图的存储和遍历进行一个规范,为以后更复杂的数据结构学习打下基础 首先是邻接矩阵的形式,适合于存稠密图,如果是全连接图就再合适不过了 int a[maxn][maxn]; 一个二维数组就可以搞定 ...
- 2015/8/31 Python基础(5):字符串
字符串是Python最常见的一种类型.通过在引号间包含字符的方式创建它.Python里单双引号的作用是一致的.Python的对象类型里不存在字符型,一般用单个字符的字符串来使用.Python的字符串是 ...
- Python中的异常处理 -- (转)
python中的异常 异常是指程序中的例外,违例情况.异常机制是指程序出现错误后,程序的处理方法.当出现错误后,程序的执行流程发生改变,程序的控制权转移到异常处理. Exception类是常用的异 ...