Codeforces Round #426 (Div. 2) D The Bakery(线段树 DP)
2.5 seconds
256 megabytes
standard input
standard output

Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredients and a wonder-oven which can bake several types of cakes, and opened the bakery.
Soon the expenses started to overcome the income, so Slastyona decided to study the sweets market. She learned it's profitable to pack cakes in boxes, and that the more distinct cake types a box contains (let's denote this number as the value of the box), the higher price it has.
She needs to change the production technology! The problem is that the oven chooses the cake types on its own and Slastyona can't affect it. However, she knows the types and order of n cakes the oven is going to bake today. Slastyona has to pack exactly k boxes with cakes today, and she has to put in each box several (at least one) cakes the oven produced one right after another (in other words, she has to put in a box a continuous segment of cakes).
Slastyona wants to maximize the total value of all boxes with cakes. Help her determine this maximum possible total value.
The first line contains two integers n and k (1 ≤ n ≤ 35000, 1 ≤ k ≤ min(n, 50)) – the number of cakes and the number of boxes, respectively.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) – the types of cakes in the order the oven bakes them.
Print the only integer – the maximum total value of all boxes with cakes.
4 1
1 2 2 1
2
7 2
1 3 3 1 4 4 4
5
8 3
7 7 8 7 7 8 1 7
6
In the first example Slastyona has only one box. She has to put all cakes in it, so that there are two types of cakes in the box, so the value is equal to 2.
In the second example it is profitable to put the first two cakes in the first box, and all the rest in the second. There are two distinct types in the first box, and three in the second box then, so the total value is 5.
【题意】给你一个序列,然后在原来的顺序基础上将这些数分成K份,每一份至少一个数,然后对于每一份,将数的种数累加,求累加和最大值。
【分析】如果n小一些的话,我们可以n方DP做,DP[i][j]表示在i这个地方将前面分成k份的最大值,那么dp[i][j]=dp[k][j-1]+(k+1~j的数的种数),
但是N太大。。。于是我们想到线段树。线段树的维护这个区间内每一个位置的dp值+这个位置到我当前dp到的位置的数的种数,然后对这个区间取最大值。当我们dp到i时,我们将a[i]上一次出现的位置+1~i这个区间更新+1,然后查询1~i的最大值即可。
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 3e4+;;
const int M = ;
const int mod = 1e9+;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
int n,k,ans;
int a[N],mx[N*],lazy[N*];
int pre[N],pos[N],dp[N];
void pushUp(int rt){
mx[rt]=max(mx[rt<<],mx[rt<<|]);
}
void pushDown(int rt){
if(lazy[rt]){
lazy[rt<<]+=lazy[rt];
lazy[rt<<|]+=lazy[rt];
mx[rt<<]+=lazy[rt];
mx[rt<<|]+=lazy[rt];
lazy[rt]=;
}
}
void build(int l,int r,int rt){
lazy[rt]=;
if(l==r){
mx[rt]=dp[l-];
return;
}
int mid=(l+r)>>;
build(l,mid,rt<<);
build(mid+,r,rt<<|);
pushUp(rt);
}
void upd(int L,int R,int l,int r,int x,int rt){
if(L<=l&&r<=R){
mx[rt]+=x;
lazy[rt]+=x;
return;
}
pushDown(rt);
int mid=(l+r)>>;
if(L<=mid)upd(L,R,l,mid,x,rt<<);
if(R>mid) upd(L,R,mid+,r,x,rt<<|);
pushUp(rt);
}
int qry(int L,int R,int l,int r,int rt){
if(L<=l&&r<=R){
return mx[rt];
}
pushDown(rt);
int ret=,mid=(l+r)>>;
if(L<=mid)ret=max(ret,qry(L,R,l,mid,rt<<));
if(R>mid)ret=max(ret,qry(L,R,mid+,r,rt<<|));
return ret;
}
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
pre[i]=pos[a[i]];
pos[a[i]]=i;
}
for(int i=;i<=k;i++){
build(,n,);
for(int j=;j<=n;j++){
upd(pre[j]+,j,,n,,);
dp[j]=qry(,j,,n,);
}
}
printf("%d\n",dp[n]);
}
Codeforces Round #426 (Div. 2) D The Bakery(线段树 DP)的更多相关文章
- Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP
D. The Bakery Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...
- Codeforces Round #587 (Div. 3) F Wi-Fi(线段树+dp)
题意:给定一个字符串s 现在让你用最小的花费 覆盖所有区间 思路:dp[i]表示前i个全覆盖以后的花费 如果是0 我们只能直接加上当前位置的权值 否则 我们可以区间询问一下最小值 然后更新 #incl ...
- Codeforces Round #426 (Div. 1) B The Bakery (线段树+dp)
B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces Round #603 (Div. 2) E. Editor(线段树)
链接: https://codeforces.com/contest/1263/problem/E 题意: The development of a text editor is a hard pro ...
- Codeforces Round #244 (Div. 2) B. Prison Transfer 线段树rmq
B. Prison Transfer Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/pro ...
- 【动态规划】【线段树】 Codeforces Round #426 (Div. 1) B. The Bakery
给你一个序列,让你划分成K段,每段的价值是其内部权值的种类数,让你最大化所有段的价值之和. 裸dp f(i,j)=max{f(k,j-1)+w(k+1,i)}(0<=k<i) 先枚举j,然 ...
- Codeforces Round #546 (Div. 2) E 推公式 + 线段树
https://codeforces.com/contest/1136/problem/E 题意 给你一个有n个数字的a数组,一个有n-1个数字的k数组,两种操作: 1.将a[i]+x,假如a[i]+ ...
- Codeforces Round #222 (Div. 1) D. Developing Game 线段树有效区间合并
D. Developing Game Pavel is going to make a game of his dream. However, he knows that he can't mak ...
- Codeforces Round #275 Div.1 B Interesting Array --线段树
题意: 构造一个序列,满足m个形如:[l,r,c] 的条件. [l,r,c]表示[l,r]中的元素按位与(&)的和为c. 解法: 线段树维护,sum[rt]表示要满足到现在为止的条件时该子树的 ...
随机推荐
- 文件字节大小显示成M,G和K
//字节大小,K,M,G public static final long KB = 1024; public static final long MB = KB * 1024; public sta ...
- PHP扩展--Oracle客户端(oci8)安装
下载Oracle客户端 官方下载地址: Linux X86-64 同意协议,下载以下文件: oracle-instantclient11.2-basic-11.2.0.4.0-1.x86_64.rpm ...
- gradle web项目启动报错: java.lang.ClassNotFoundException: org.springframework.web.util.IntrospectorCleanupListener
严重: Error configuring application listener of class org.springframework.web.util.IntrospectorCleanup ...
- 4 Values whose Sum is 0 POJ 2785 (折半枚举)
题目链接 Description The SUM problem can be formulated as follows: given four lists A, B, C, D of intege ...
- Fermat2018游记
day (-22) 2018年2月5日 Devin大佬给我发了一份Waterloo AIF的原件截图,发现里面居然直接问你的Fermat分数,那么这么重要的考试当然不能错过啊 若干天之后刚开学不久的一 ...
- 工具_HBuilder使用快捷方式
HBuilder常用快捷键大概共9类([4 13 3]文件.编辑.插入:[4 9 8]选择.跳转.查找:[1 1 6]运行.工具.视图) 1.文件(4) 新建 Ctrl + N 关闭 Ctrl + F ...
- 编写jquery Plugin
编写jquery插件的原则 1.给$.fn绑定函数,实现插件的代码逻辑 2.插件函数最后要return this,以支持链式调用 3.插件函数要有默认值,绑定在$.fn.<pluginName& ...
- Linux简介——(一)
1. 常见操作系统 - 服务端操作系统 : linux.unix.windows server - 单机操作系统 : windows(dos .ucdos.win95.win98.win2000.xp ...
- linux编程之共享内存
linux 进程间通信(IPC)包括3种机制:消息队列.信号量.共享内存.消息队列和信号量均是内核空间的系统对象,经由它们 的数据需要在内核和用户空间进行额外的数据拷贝:而共享内存和访问它的所有应用程 ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...