The Bakery
time limit per test

2.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredients and a wonder-oven which can bake several types of cakes, and opened the bakery.

Soon the expenses started to overcome the income, so Slastyona decided to study the sweets market. She learned it's profitable to pack cakes in boxes, and that the more distinct cake types a box contains (let's denote this number as the value of the box), the higher price it has.

She needs to change the production technology! The problem is that the oven chooses the cake types on its own and Slastyona can't affect it. However, she knows the types and order of n cakes the oven is going to bake today. Slastyona has to pack exactly k boxes with cakes today, and she has to put in each box several (at least one) cakes the oven produced one right after another (in other words, she has to put in a box a continuous segment of cakes).

Slastyona wants to maximize the total value of all boxes with cakes. Help her determine this maximum possible total value.

Input

The first line contains two integers n and k (1 ≤ n ≤ 35000, 1 ≤ k ≤ min(n, 50)) – the number of cakes and the number of boxes, respectively.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) – the types of cakes in the order the oven bakes them.

Output

Print the only integer – the maximum total value of all boxes with cakes.

Examples
input
4 1
1 2 2 1
output
2
input
7 2
1 3 3 1 4 4 4
output
5
input
8 3
7 7 8 7 7 8 1 7
output
6
Note

In the first example Slastyona has only one box. She has to put all cakes in it, so that there are two types of cakes in the box, so the value is equal to 2.

In the second example it is profitable to put the first two cakes in the first box, and all the rest in the second. There are two distinct types in the first box, and three in the second box then, so the total value is 5.

【题意】给你一个序列,然后在原来的顺序基础上将这些数分成K份,每一份至少一个数,然后对于每一份,将数的种数累加,求累加和最大值。

【分析】如果n小一些的话,我们可以n方DP做,DP[i][j]表示在i这个地方将前面分成k份的最大值,那么dp[i][j]=dp[k][j-1]+(k+1~j的数的种数),

但是N太大。。。于是我们想到线段树。线段树的维护这个区间内每一个位置的dp值+这个位置到我当前dp到的位置的数的种数,然后对这个区间取最大值。当我们dp到i时,我们将a[i]上一次出现的位置+1~i这个区间更新+1,然后查询1~i的最大值即可。

#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 3e4+;;
const int M = ;
const int mod = 1e9+;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
int n,k,ans;
int a[N],mx[N*],lazy[N*];
int pre[N],pos[N],dp[N];
void pushUp(int rt){
mx[rt]=max(mx[rt<<],mx[rt<<|]);
}
void pushDown(int rt){
if(lazy[rt]){
lazy[rt<<]+=lazy[rt];
lazy[rt<<|]+=lazy[rt];
mx[rt<<]+=lazy[rt];
mx[rt<<|]+=lazy[rt];
lazy[rt]=;
}
}
void build(int l,int r,int rt){
lazy[rt]=;
if(l==r){
mx[rt]=dp[l-];
return;
}
int mid=(l+r)>>;
build(l,mid,rt<<);
build(mid+,r,rt<<|);
pushUp(rt);
}
void upd(int L,int R,int l,int r,int x,int rt){
if(L<=l&&r<=R){
mx[rt]+=x;
lazy[rt]+=x;
return;
}
pushDown(rt);
int mid=(l+r)>>;
if(L<=mid)upd(L,R,l,mid,x,rt<<);
if(R>mid) upd(L,R,mid+,r,x,rt<<|);
pushUp(rt);
}
int qry(int L,int R,int l,int r,int rt){
if(L<=l&&r<=R){
return mx[rt];
}
pushDown(rt);
int ret=,mid=(l+r)>>;
if(L<=mid)ret=max(ret,qry(L,R,l,mid,rt<<));
if(R>mid)ret=max(ret,qry(L,R,mid+,r,rt<<|));
return ret;
}
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
pre[i]=pos[a[i]];
pos[a[i]]=i;
}
for(int i=;i<=k;i++){
build(,n,);
for(int j=;j<=n;j++){
upd(pre[j]+,j,,n,,);
dp[j]=qry(,j,,n,);
}
}
printf("%d\n",dp[n]);
}

Codeforces Round #426 (Div. 2) D The Bakery(线段树 DP)的更多相关文章

  1. Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP

    D. The Bakery   Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...

  2. Codeforces Round #587 (Div. 3) F Wi-Fi(线段树+dp)

    题意:给定一个字符串s 现在让你用最小的花费 覆盖所有区间 思路:dp[i]表示前i个全覆盖以后的花费 如果是0 我们只能直接加上当前位置的权值 否则 我们可以区间询问一下最小值 然后更新 #incl ...

  3. Codeforces Round #426 (Div. 1) B The Bakery (线段树+dp)

    B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  4. Codeforces Round #603 (Div. 2) E. Editor(线段树)

    链接: https://codeforces.com/contest/1263/problem/E 题意: The development of a text editor is a hard pro ...

  5. Codeforces Round #244 (Div. 2) B. Prison Transfer 线段树rmq

    B. Prison Transfer Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/pro ...

  6. 【动态规划】【线段树】 Codeforces Round #426 (Div. 1) B. The Bakery

    给你一个序列,让你划分成K段,每段的价值是其内部权值的种类数,让你最大化所有段的价值之和. 裸dp f(i,j)=max{f(k,j-1)+w(k+1,i)}(0<=k<i) 先枚举j,然 ...

  7. Codeforces Round #546 (Div. 2) E 推公式 + 线段树

    https://codeforces.com/contest/1136/problem/E 题意 给你一个有n个数字的a数组,一个有n-1个数字的k数组,两种操作: 1.将a[i]+x,假如a[i]+ ...

  8. Codeforces Round #222 (Div. 1) D. Developing Game 线段树有效区间合并

    D. Developing Game   Pavel is going to make a game of his dream. However, he knows that he can't mak ...

  9. Codeforces Round #275 Div.1 B Interesting Array --线段树

    题意: 构造一个序列,满足m个形如:[l,r,c] 的条件. [l,r,c]表示[l,r]中的元素按位与(&)的和为c. 解法: 线段树维护,sum[rt]表示要满足到现在为止的条件时该子树的 ...

随机推荐

  1. SpringBoot Caused by: java.lang.NoClassDefFoundError: org/apache/tomcat/util/descriptor/tld/TldParser

    最近尝试着用spring boot ,页面模版使用的jsp,在pom里配置了对jsp的支持: <dependency> <groupId>org.apache.tomcat.e ...

  2. 【BZOJ】2705: [SDOI2012]Longge的问题

    [题意]给定n,求∑gcd(i,n),(1<=i<=n),n<=2^32 [算法]数论(欧拉函数,gcd) [题解]批量求gcd的题目常常可以反过来枚举gcd的值. 记f(g)为gc ...

  3. js_页面关闭beforeunload事件

    做圆桌爆文公众号的时候,需要对阅读的文章进行时间统计.是这个公众号的核心功能,客户把文章转发到朋友圈或者转给朋友,记录谁阅读此文章和阅读时长进行记录,从而展示给客户. 功能点是,关闭页面时触发事件,请 ...

  4. poj 2000 Gold Coins

    题目链接:http://poj.org/problem?id=2000 题目大意:求N天得到多少个金币,第一天得到1个,第二.三天得到2个,第四.五.六天得到3个....以此类推,得到第N天的金币数. ...

  5. AndroidStudio获得发布版安全码SHA1

    耗了一下午才搞定 在cmd中: 1.打开keytool的目录:即JDK的安装目录 2.输入口令: (E:\tenyears\tenyears\app是keystore文件的目录)

  6. Part2-HttpClient官方教程-Chapter2-连接管理

    2.1 连接持久性 建立从一个主机到另一个主机的连接的过程相当复杂,并且涉及两个端点之间的多个分组交换,这可能相当耗时.连接握手的开销可能很大,特别是对于小型的HTTP消息. 如果可以重新使用开放连接 ...

  7. perl 复制exe文件的简单方法

    use warnings; use strict; open EXE, "cmd.exe" or die "Can not open cmd.exe:$!\n" ...

  8. peewee外键性能问题

    # 转载自:https://www.cnblogs.com/miaojiyao/articles/5217757.html 下面讨论一下用peewee的些许提高性能的方法. 避免N+1查询 N+1查询 ...

  9. v4l2驱动编写篇【转】

    转自:http://blog.csdn.net/michaelcao1980/article/details/53008418 大部分所需的信息都在这里.作为一个驱动作者,当挖掘头文件的时候,你可能也 ...

  10. python string 对齐文本的几个方法

    用rjust().ljust()和center()方法对齐文本