Codeforces Round #426 (Div. 2) D The Bakery(线段树 DP)
2.5 seconds
256 megabytes
standard input
standard output
Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredients and a wonder-oven which can bake several types of cakes, and opened the bakery.
Soon the expenses started to overcome the income, so Slastyona decided to study the sweets market. She learned it's profitable to pack cakes in boxes, and that the more distinct cake types a box contains (let's denote this number as the value of the box), the higher price it has.
She needs to change the production technology! The problem is that the oven chooses the cake types on its own and Slastyona can't affect it. However, she knows the types and order of n cakes the oven is going to bake today. Slastyona has to pack exactly k boxes with cakes today, and she has to put in each box several (at least one) cakes the oven produced one right after another (in other words, she has to put in a box a continuous segment of cakes).
Slastyona wants to maximize the total value of all boxes with cakes. Help her determine this maximum possible total value.
The first line contains two integers n and k (1 ≤ n ≤ 35000, 1 ≤ k ≤ min(n, 50)) – the number of cakes and the number of boxes, respectively.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) – the types of cakes in the order the oven bakes them.
Print the only integer – the maximum total value of all boxes with cakes.
4 1
1 2 2 1
2
7 2
1 3 3 1 4 4 4
5
8 3
7 7 8 7 7 8 1 7
6
In the first example Slastyona has only one box. She has to put all cakes in it, so that there are two types of cakes in the box, so the value is equal to 2.
In the second example it is profitable to put the first two cakes in the first box, and all the rest in the second. There are two distinct types in the first box, and three in the second box then, so the total value is 5.
【题意】给你一个序列,然后在原来的顺序基础上将这些数分成K份,每一份至少一个数,然后对于每一份,将数的种数累加,求累加和最大值。
【分析】如果n小一些的话,我们可以n方DP做,DP[i][j]表示在i这个地方将前面分成k份的最大值,那么dp[i][j]=dp[k][j-1]+(k+1~j的数的种数),
但是N太大。。。于是我们想到线段树。线段树的维护这个区间内每一个位置的dp值+这个位置到我当前dp到的位置的数的种数,然后对这个区间取最大值。当我们dp到i时,我们将a[i]上一次出现的位置+1~i这个区间更新+1,然后查询1~i的最大值即可。
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 3e4+;;
const int M = ;
const int mod = 1e9+;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
int n,k,ans;
int a[N],mx[N*],lazy[N*];
int pre[N],pos[N],dp[N];
void pushUp(int rt){
mx[rt]=max(mx[rt<<],mx[rt<<|]);
}
void pushDown(int rt){
if(lazy[rt]){
lazy[rt<<]+=lazy[rt];
lazy[rt<<|]+=lazy[rt];
mx[rt<<]+=lazy[rt];
mx[rt<<|]+=lazy[rt];
lazy[rt]=;
}
}
void build(int l,int r,int rt){
lazy[rt]=;
if(l==r){
mx[rt]=dp[l-];
return;
}
int mid=(l+r)>>;
build(l,mid,rt<<);
build(mid+,r,rt<<|);
pushUp(rt);
}
void upd(int L,int R,int l,int r,int x,int rt){
if(L<=l&&r<=R){
mx[rt]+=x;
lazy[rt]+=x;
return;
}
pushDown(rt);
int mid=(l+r)>>;
if(L<=mid)upd(L,R,l,mid,x,rt<<);
if(R>mid) upd(L,R,mid+,r,x,rt<<|);
pushUp(rt);
}
int qry(int L,int R,int l,int r,int rt){
if(L<=l&&r<=R){
return mx[rt];
}
pushDown(rt);
int ret=,mid=(l+r)>>;
if(L<=mid)ret=max(ret,qry(L,R,l,mid,rt<<));
if(R>mid)ret=max(ret,qry(L,R,mid+,r,rt<<|));
return ret;
}
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
pre[i]=pos[a[i]];
pos[a[i]]=i;
}
for(int i=;i<=k;i++){
build(,n,);
for(int j=;j<=n;j++){
upd(pre[j]+,j,,n,,);
dp[j]=qry(,j,,n,);
}
}
printf("%d\n",dp[n]);
}
Codeforces Round #426 (Div. 2) D The Bakery(线段树 DP)的更多相关文章
- Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP
D. The Bakery Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...
- Codeforces Round #587 (Div. 3) F Wi-Fi(线段树+dp)
题意:给定一个字符串s 现在让你用最小的花费 覆盖所有区间 思路:dp[i]表示前i个全覆盖以后的花费 如果是0 我们只能直接加上当前位置的权值 否则 我们可以区间询问一下最小值 然后更新 #incl ...
- Codeforces Round #426 (Div. 1) B The Bakery (线段树+dp)
B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces Round #603 (Div. 2) E. Editor(线段树)
链接: https://codeforces.com/contest/1263/problem/E 题意: The development of a text editor is a hard pro ...
- Codeforces Round #244 (Div. 2) B. Prison Transfer 线段树rmq
B. Prison Transfer Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/pro ...
- 【动态规划】【线段树】 Codeforces Round #426 (Div. 1) B. The Bakery
给你一个序列,让你划分成K段,每段的价值是其内部权值的种类数,让你最大化所有段的价值之和. 裸dp f(i,j)=max{f(k,j-1)+w(k+1,i)}(0<=k<i) 先枚举j,然 ...
- Codeforces Round #546 (Div. 2) E 推公式 + 线段树
https://codeforces.com/contest/1136/problem/E 题意 给你一个有n个数字的a数组,一个有n-1个数字的k数组,两种操作: 1.将a[i]+x,假如a[i]+ ...
- Codeforces Round #222 (Div. 1) D. Developing Game 线段树有效区间合并
D. Developing Game Pavel is going to make a game of his dream. However, he knows that he can't mak ...
- Codeforces Round #275 Div.1 B Interesting Array --线段树
题意: 构造一个序列,满足m个形如:[l,r,c] 的条件. [l,r,c]表示[l,r]中的元素按位与(&)的和为c. 解法: 线段树维护,sum[rt]表示要满足到现在为止的条件时该子树的 ...
随机推荐
- 【转载】Java JVM : Xms Xmx PermSize MaxPermSize 区别
转载自:http://cxh61207.iteye.com/blog/1160663 java JVM虚拟机选项: Xms Xmx PermSize MaxPermSize 区别 Xms 是指设定程 ...
- 【BZOJ5010】【FJOI2017】矩阵填数 [状压DP]
矩阵填数 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定一个 h*w 的矩阵,矩阵的行 ...
- bzoj 1052 dfs
首先可以二分答案,将最优性问题转化为判定性问题. 对于二分到的边长,我们可以把所有的点看成一个大的矩形,这个矩形为包括所有点的最小矩形,那么贪心的想,3个正方形,第一个肯定放在这个矩形其中的一角,然后 ...
- list互转datatable 支持Nullable转换
/// <summary> /// list转datatable /// </summary> /// <param name="list">& ...
- windows7_常用操作终端操作
查看环境变量:set 添加环境变量:set aa = 88 删除环境变量:set aa = 查看ip配置:ipconfig 查看全局环境变量配置:path 查看当前目录文件:dir 进入E盘:E: 进 ...
- Part2-HttpClient官方教程-Chapter5-流利的API
5.1. 易于使用的Facade API 使用之前注意引入相应Jar包或者Maven依赖 <dependency> <groupId>org.apache.httpcompon ...
- 完全教程 Aircrack-ng破解WEP、WPA-PSK加密利器
其 实关于无线基础知识的内容还是挺多的,但是由于本书侧重于BT4自身工具使用的讲解,若是再仔细讲述这些外围的知识,这就好比讲述DNS工具时还要把 DNS服务器的类型.工作原理及配置讲述一遍一样,哈哈, ...
- python之计算器
开发一个简单的python计算器 1.实现加减乘除及拓号优先级解析 2.用户输入 1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * ...
- java===java基础学习(11)---继承
继承可以解决代码复用,让编程更加靠近人的思维.当多个类存在相同的属性(变量)和方法时,可以从这些类中抽象出父类,在父类中定义这些相同的属性和方法.所有的子类不需要重新定义这些属性和方法,只需要通过ex ...
- .net爬虫了解一下
using System; //添加selenium的引用 using OpenQA.Selenium.PhantomJS; using OpenQA.Selenium.Chrome; using O ...