【数论】【莫比乌斯反演】【线性筛】bzoj2005 [Noi2010]能量采集
http://blog.csdn.net/Clove_unique/article/details/51089272
Key:1、连接平面上某个整点(a,b)到原点的线段上有gcd(a,b)个整点。
2、欧拉函数的性质之一:若(N%a==0 && (N/a)%a==0) 则有:phi(N)=phi(N/a)*a。由此可以线性筛。
3、一个数的所有因子的phi值之和恰好等于这个数本身。
#include<cstdio>
#include<algorithm>
using namespace std;
#define N 100000
typedef long long ll;
bool notpri[N+5];
int pri[N+5];
ll phi[N+5];
void shai_eular()//线性筛欧拉函数,顺便处理前缀和
{
notpri[1]=1;
phi[1]=1;
for(int i=2;i<=N;++i){
if(!notpri[i]){
pri[++pri[0]]=i;
phi[i]=(ll)(i-1);
}
for(int j=1;j<=pri[0] && (ll)i*(ll)pri[j]<=(ll)N;++j){
notpri[i*pri[j]]=1;
if(i%pri[j]==0){
phi[i*pri[j]]=phi[i]*(ll)pri[j];
break;
}
phi[i*pri[j]]=phi[i]*(ll)(pri[j]-1);
}
}
for(int i=2;i<=N;++i){
phi[i]+=phi[i-1];
}
}
int n,m;
int main(){
shai_eular();
scanf("%d%d",&n,&m);
if(n>m){
swap(n,m);
}
ll ans=0;
for(int i=1;i<=n;){
int j1=n/(n/i);
int j2=m/(m/i);
int j=min(j1,j2);
ans+=(phi[j]-phi[i-1])*(n/i)*(m/i);
i=j+1;
}
printf("%lld\n",2ll*ans-(ll)n*(ll)m);
return 0;
}
【数论】【莫比乌斯反演】【线性筛】bzoj2005 [Noi2010]能量采集的更多相关文章
- BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】
BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...
- 【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- [BZOJ2005][Noi2010]能量采集 容斥+数论
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4394 Solved: 2624[Submit][Statu ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛
分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...
- 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集
Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
随机推荐
- MSSQL DBcheck
--1.创建数据库. --create database MyDatabase; --删除数据库 --drop database MyDatabase; ----------------------- ...
- HTML JS文字闪烁实现(项目top.htm分析)
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <!-- saved from ur ...
- 关于Solaris系统“mpt_sas”驱动
1.mpt_sas 驱动源文件所在系统源代码中目录: illumos-soulos/usr/src/uts/common/sys/scsi/adapters/mpt_sas -- 头文件 illum ...
- E题hdu 1425 sort
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1425 sort Time Limit: 6000/1000 MS (Java/Others) M ...
- Port-knocking 简单教程
0. "port knocking" 如字面意思,类似'敲门',只是这里敲的是'端口',而且需要按照顺序'敲'端口.如果敲击规则匹配,则可以让防火墙实时更改策略.从而达到开关防火墙 ...
- 手把手教你写Linux设备驱动---中断(三)--workqueue实现(基于友善之臂4412开发板) 【转】
转自:http://blog.csdn.net/morixinguan/article/details/69680909 上节,我们讲到如何来实现tasklet小任务机制 http://blog.cs ...
- python实战===用python识别图片中的中文
需要安装的模块 PIL pytesseract 需要下载的工具: http://download.csdn.net/download/bo_mask/10196285 因为之前百度云的链接总失效,所以 ...
- java===编译引用第三方文件的类(原创)
http://blog.csdn.net/m53931422/article/details/42174609 http://blog.csdn.net/u012450329/article/deta ...
- abp 调试
概要 研究Abp(ASP.NET Boilerplate)框架有几个月了,从一遍遍的看官方文档,到现在看源码,一路走来学习了很多知识. 很多新手都很关心源码如何调试,我也是如此,在反复看Debuggi ...
- windows server 2012 IIS配置之FTP站点
原文地址:[原创]winserver2012IIS配置之FTP站点作者:hkmysterious 一.实验拓扑: 使server2012客户计算机通过ftp方式从FTP服务器上下载已上传并共享的文 ...