http://blog.csdn.net/Clove_unique/article/details/51089272

Key:1、连接平面上某个整点(a,b)到原点的线段上有gcd(a,b)个整点。

2、欧拉函数的性质之一:若(N%a==0 && (N/a)%a==0) 则有:phi(N)=phi(N/a)*a。由此可以线性筛。

3、一个数的所有因子的phi值之和恰好等于这个数本身。

#include<cstdio>
#include<algorithm>
using namespace std;
#define N 100000
typedef long long ll;
bool notpri[N+5];
int pri[N+5];
ll phi[N+5];
void shai_eular()//线性筛欧拉函数,顺便处理前缀和
{
notpri[1]=1;
phi[1]=1;
for(int i=2;i<=N;++i){
if(!notpri[i]){
pri[++pri[0]]=i;
phi[i]=(ll)(i-1);
}
for(int j=1;j<=pri[0] && (ll)i*(ll)pri[j]<=(ll)N;++j){
notpri[i*pri[j]]=1;
if(i%pri[j]==0){
phi[i*pri[j]]=phi[i]*(ll)pri[j];
break;
}
phi[i*pri[j]]=phi[i]*(ll)(pri[j]-1);
}
}
for(int i=2;i<=N;++i){
phi[i]+=phi[i-1];
}
}
int n,m;
int main(){
shai_eular();
scanf("%d%d",&n,&m);
if(n>m){
swap(n,m);
}
ll ans=0;
for(int i=1;i<=n;){
int j1=n/(n/i);
int j2=m/(m/i);
int j=min(j1,j2);
ans+=(phi[j]-phi[i-1])*(n/i)*(m/i);
i=j+1;
}
printf("%lld\n",2ll*ans-(ll)n*(ll)m);
return 0;
}

【数论】【莫比乌斯反演】【线性筛】bzoj2005 [Noi2010]能量采集的更多相关文章

  1. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  2. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  3. 【bzoj2694】Lcm 莫比乌斯反演+线性筛

    题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...

  4. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  5. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  6. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  7. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  8. 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集

    Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...

  9. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

随机推荐

  1. Spring Cloud Eureka服务注册源码分析

    Eureka是怎么work的 那eureka client如何将本地服务的注册信息发送到远端的注册服务器eureka server上.通过下面的源码分析,看出Eureka Client的定时任务调用E ...

  2. MS16-032提权正确方法

    原版MS16-032提权会Spawn一个System Shell出来,只能通过Remote Desktop获取.这里修改exploit,直接反弹Shell.注意MS16-032依赖 thread ha ...

  3. Centos7的iso everything与DVD以及Live的区别

    DVD.ISO 可以用安装程序安装的所有安装包,推荐镜像 Netinstall.iso 从网络安装或者救援系统 Everything.iso 包含centos7的一套完整的软件包,可以用来安装系统或者 ...

  4. Linux内核空间内存申请函数kmalloc、kzalloc、vmalloc的区别【转】

    转自:http://www.th7.cn/system/lin/201606/167750.shtml 我们都知道在用户空间动态申请内存用的函数是 malloc(),这个函数在各种操作系统上的使用是一 ...

  5. 比特币编译(Ubuntu 16.04)

    安装比特币需要的所有库 sudo apt-get install build-essential libtool autotools-dev automake pkg-config libssl-de ...

  6. Python的web服务器

    1.浏览器请求动态页面过程 2.WSGI Python Web Server Gateway Interface (或简称 WSGI,读作“wizgy”). WSGI允许开发者将选择web框架和web ...

  7. webapi-1 给现有MVC 项目添加 WebAPI

    1. 增加一个WebApi Controller, VS 会自动添加相关的引用,主要有System.Web.Http,System.Web.Http.WebHost,System.Net.Http 2 ...

  8. [New learn]@class和#import的区别使用

    1.简介 我们在查看代码的时候经常会发现有些地方使用@class而有些地方使用#import,他们到底有什么区别呢, 本文意图去归纳和总结这两种类引用的是的处理方法和规则. 2.分析 此小节会通过一些 ...

  9. LCT 文档

    file:///C:/Users/Frank/Downloads/QTREE%E8%A7%A3%E6%B3%95%E7%9A%84%E4%B8%80%E4%BA%9B%E7%A0%94%E7%A9%B ...

  10. linux命令(1):sed命令

    实例一: Config_file文件内容如下: sed去除注释行:sed -i -c -e '/^#/d' config_file  [会删除指定文件带有注释行] sed去除空行: sed -i -c ...