Luogu P2486 染色(树链剖分+线段树)
题解
不妨采取重链剖分的方式把路径剖成区间,然后用线段树维护,考虑如何合并一个区间
struct Node {
int lf, rg, tot;
}seg[N << 2]; int col[N << 2];
inline Node merge(const Node &lc, const Node &rc) {
if(!lc.tot) return rc;
if(!rc.tot) return lc;
Node ret = (Node){lc.lf, rc.rg, lc.tot + rc.tot};
if(lc.rg == rc.lf) --ret.tot;
return ret;
}
其中$Node$表示线段树中的一个节点,共有三个参数,左端点颜色,右端点颜色以及区间内颜色段数。$col$数组用于下方染色标记。
但是我们要考虑这个区间合并后是否存在相同的颜色其应该只有$1$的贡献却被记了$2$的贡献。这种情况存在当且仅当左区间的右端点颜色与右区间左端点颜色相同。
接着,有关于线段树的其他操作也没有什么好担心的了,接着考虑如何查询。
inline int doit(int x, int y) {
int fx = top[x], fy = top[y];
Node disx = (Node){0, 0, 0}, disy = (Node){0, 0, 0};
while(fx != fy) {
if(dep[fx] >= dep[fy]) disx = merge(query(dfn[fx], dfn[x]), disx), x = fa[fx], fx = top[x];
else disy = merge(query(dfn[fy], dfn[y]), disy), y = fa[fy], fy = top[y];
} if(dfn[x] > dfn[y]) swap(x, y), swap(disx, disy);
swap(disx.lf, disx.rg);
Node ret = merge(merge(disx, query(dfn[x], dfn[y])), disy);
return ret.tot;
}
由于重链剖分跳$top$时,两个端点的路径是独立的,所以不能像普通查询那样直接累加贡献,要分开处理,最后存在一个特殊情况,要将左区间的左右端点反置。(画图即可明白)
代码
#include <cstdio>
#include <algorithm>
using std::swap;
typedef long long ll;
const int N = 1e5 + 10;
int n, m, c[N], w[N];
int fa[N], son[N], siz[N], dep[N];
int time, dfn[N], top[N];
int cnt, from[N], to[N << 1], nxt[N << 1];
struct Node {
int lf, rg, tot;
}seg[N << 2]; int col[N << 2];
void addEdge(int u, int v) {
to[++cnt] = v, nxt[cnt] = from[u], from[u] = cnt;
}
void dfs(int u) {
dep[u] = dep[fa[u]] + 1, siz[u] = 1;
for(int i = from[u]; i; i = nxt[i]) {
int v = to[i]; if(v == fa[u]) continue;
fa[v] = u, dfs(v), siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
void dfs(int u, int t) {
dfn[u] = ++time, top[u] = t, w[time] = c[u];
if(!son[u]) return ; dfs(son[u], t);
for(int i = from[u]; i; i = nxt[i]) {
int v = to[i];
if(v != fa[u] && v != son[u])
dfs(v, v);
}
}
inline Node merge(const Node &lc, const Node &rc) {
if(!lc.tot) return rc;
if(!rc.tot) return lc;
Node ret = (Node){lc.lf, rc.rg, lc.tot + rc.tot};
if(lc.rg == rc.lf) --ret.tot;
return ret;
}
inline void pushdown(int o, int lc, int rc) {
if(col[o]) {
seg[lc] = (Node){col[o], col[o], 1};
seg[rc] = (Node){col[o], col[o], 1};
col[lc] = col[rc] = col[o], col[o] = 0;
}
}
void build(int o = 1, int l = 1, int r = n) {
if(l == r) { seg[o] = (Node){w[l], w[l], 1}; return ; }
int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1;
build(lc, l, mid), build(rc, mid + 1, r), seg[o] = merge(seg[lc], seg[rc]);
}
void color(int cl, int cr, int k, int o = 1, int l = 1, int r = n) {
if(l >= cl && r <= cr) {
seg[o] = (Node){k, k, 1}, col[o] = k;
return ;
}
int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1;
pushdown(o, lc, rc);
if(cl <= mid) color(cl, cr, k, lc, l, mid);
if(cr > mid) color(cl, cr, k, rc, mid + 1, r);
seg[o] = merge(seg[lc], seg[rc]);
}
Node query(int ql, int qr, int o = 1, int l = 1, int r = n) {
if(l >= ql && r <= qr) return seg[o];
int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1;
Node ret = (Node){0, 0, 0};
pushdown(o, lc, rc);
if(ql <= mid) ret = query(ql, qr, lc, l, mid);
if(qr > mid) ret = merge(ret, query(ql, qr, rc, mid + 1, r));
return ret;
}
inline void upt(int x, int y, int k) {
int fx = top[x], fy = top[y];
while(fx != fy) {
if(dep[fx] >= dep[fy]) color(dfn[fx], dfn[x], k), x = fa[fx], fx = top[x];
else color(dfn[fy], dfn[y], k), y = fa[fy], fy = top[y];
} if(dfn[x] > dfn[y]) swap(x, y);
color(dfn[x], dfn[y], k);
}
inline int doit(int x, int y) {
int fx = top[x], fy = top[y];
Node disx = (Node){0, 0, 0}, disy = (Node){0, 0, 0};
while(fx != fy) {
if(dep[fx] >= dep[fy]) disx = merge(query(dfn[fx], dfn[x]), disx), x = fa[fx], fx = top[x];
else disy = merge(query(dfn[fy], dfn[y]), disy), y = fa[fy], fy = top[y];
} if(dfn[x] > dfn[y]) swap(x, y), swap(disx, disy);
swap(disx.lf, disx.rg);
Node ret = merge(merge(disx, query(dfn[x], dfn[y])), disy);
return ret.tot;
}
int main () {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) scanf("%d", c + i);
for (int i = 1, u, v; i < n; ++i) {
scanf("%d%d", &u, &v);
addEdge(u, v), addEdge(v, u);
}
dfs(1), dfs(1, 1), build();
char opt; int a, b, c;
while(m--) {
scanf("\n%c%d%d", &opt, &a, &b);
if(opt == 'C') {
scanf("%d", &c);
upt(a, b, c);
} else printf("%d\n", doit(a, b));
}
return 0;
}
Luogu P2486 染色(树链剖分+线段树)的更多相关文章
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- bzoj2243[SDOI2011]染色 树链剖分+线段树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 9012 Solved: 3375[Submit][Status ...
- B20J_2243_[SDOI2011]染色_树链剖分+线段树
B20J_2243_[SDOI2011]染色_树链剖分+线段树 一下午净调这题了,争取晚上多做几道. 题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成 ...
- 2243: [SDOI2011]染色 树链剖分+线段树染色
给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段), 如“112221”由3段组 ...
- BZOJ2243 [SDOI2011]染色(树链剖分+线段树合并)
题目链接 BZOJ2243 树链剖分 $+$ 线段树 线段树每个节点维护$lc$, $rc$, $s$ $lc$代表该区间的最左端的颜色,$rc$代表该区间的最右端的颜色 $s$代表该区间的所有连续颜 ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
- 【bzoj1959】[Ahoi2005]LANE 航线规划 树链剖分+线段树
题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系. 星际空间站的Samuel II巨型计算 ...
- 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点
题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- POJ3237 (树链剖分+线段树)
Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...
随机推荐
- [SCOI2009]生日礼物
https://www.luogu.org/problem/show?pid=2564 题目描述 小西有一条很长的彩带,彩带上挂着各式各样的彩珠.已知彩珠有N个,分为K种.简单的说,可以将彩带考虑为x ...
- ASP.NET和ASP的区别是什么
分析: ASP与ASP.NET是Microsoft公司在Web应用程序开发上的两项重要技术. ASP与ASP.NET区别如下: (1)开发语言不同:ASP的开发语言仅局限于使用non-type脚本语言 ...
- iOS 隐藏/显示导航栏
一.隐藏导航栏 [self.navigationController.navigationBar setBackgroundImage:[UIImage new] forBarMetrics:UIBa ...
- 网页实现插入图片—css与html的区别
Q1.二者有何区别?A1.写在css里面的图片是以背景图形式存在的,而写在html里的是以<img>标签形式存在的,在网页加载的过程中,以css背景图存在的图片会等到结构加载完成(网页的内 ...
- 利用procdump+Mimikatz 绕过杀软获取Windows明文密码
思路: 就是通过系统自带的procdump去下载存储用户名密码的文件(应该不能那么说这个文件,但是这样理解没问题),然后用猕猴桃读取. procdump.exe Procdump是一个轻量级的Sysi ...
- Python3 Socket和SocketServer 网络编程
socket只能实现同时一个服务和一个客户端实现交互,socketserver可以实现多个客户端同时和服务端交互 1.利用Socket编写简单的同一个端口容许多次会话的小案例: 服务端: #!/usr ...
- 【Python项目】使用Face++的人脸识别detect API进行本地图片情绪识别并存入excel
准备工作 首先,需要在Face++的主页注册一个账号,在控制台去获取API Key和API Secret. 然后在本地文件夹准备好要进行情绪识别的图片/相片. 代码 介绍下所使用的第三方库 ——url ...
- 一个文档让vim飞起来
原文地址:http://www.cnblogs.com/songfy/p/5635757.html 引言 今天我们特地来讲讲这个vim的配置. vim这东西, 很多人装逼的时候经常会提到, 不过大部分 ...
- python基础===多线程
https://www.cnblogs.com/wj-1314/p/8263328.html threading 模块 先上代码: import time, threading def loop(): ...
- 《LINUX3.0内核源代码分析》第二章:中断和异常 【转】
转自:http://blog.chinaunix.net/uid-25845340-id-2982887.html 摘要:第二章主要讲述linux如何处理ARM cortex A9多核处理器的中断.异 ...