XOR and Favorite Number (莫对算法)
4 seconds
256 megabytes
standard input
standard output
Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such thatl ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.
Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.
Print m lines, answer the queries in the order they appear in the input.
6 2 3
1 2 1 1 0 3
1 6
3 5
7
0
5 3 1
1 1 1 1 1
1 5
2 4
1 3
9
4
4
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5,6), (6, 6). Not a single of these pairs is suitable for the second query.
In the second sample xor equals 1 for all subarrays of an odd length.
题意:有n个数和m次询问,每一询问会有一个L和R,表示所询问的区间,
问在这个区间中有多少个连续的子区间的亦或和为k
假设我们现在有一个前缀异或和数组sum[],现在我们要求区间[L,R]的异或的值,
用sum数组表示就是sum[L-1]^sum[R]==K,或者说是K^sum[R]==sum[L-1]
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 2e6 + ;
int n, m, k, L, R, sz, a[maxn];
LL sum[maxn], ans, ANS[maxn];
struct node {
int l, r, id;
node() {}
node(int l, int r, int id): l(l), r(r), id(id) {}
bool operator <(const node & a)const {
if (l / sz == a.l / sz) return r < a.r;
return l < a.l;
}
} qu[maxn];
void add(int x) {
ans += sum[a[x] ^ k];
sum[a[x]]++;
}
void del(int x) {
sum[a[x]]--;
ans -= sum[a[x] ^ k];
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = ; i <= n ; i++) {
scanf("%d", &a[i]);
a[i] ^= a[i - ];
}
for (int i = ; i <= m ; i++) {
scanf("%d%d", &qu[i].l, &qu[i].r);
qu[i].l--;
qu[i].id = i;
}
sz = (int)sqrt(n);
sort(qu + , qu + m + );
L = , R = ;
for (int i = ; i <= m ; i++) {
while(L > qu[i].l) add(--L);
while(R < qu[i].r) add(++R);
while(L < qu[i].l) del(L++);
while(R > qu[i].r) del(R--);
ANS[qu[i].id] = ans;
}
for (int i = ; i <= m ; i++)
printf("%lld\n", ANS[i]);
return ;
}
XOR and Favorite Number (莫对算法)的更多相关文章
- Codeforces617 E . XOR and Favorite Number(莫队算法)
XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法
E. XOR and Favorite Number 题目连接: http://www.codeforces.com/contest/617/problem/E Descriptionww.co Bo ...
- codeforces 617E E. XOR and Favorite Number(莫队算法)
题目链接: E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes i ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法
题目链接:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...
- CodeForces - 617E XOR and Favorite Number 莫队算法
https://vjudge.net/problem/CodeForces-617E 题意,给你n个数ax,m个询问Ly,Ry, 问LR内有几对i,j,使得ai^...^ aj =k. 题解:第一道 ...
- Codeforces 617E XOR and Favorite Number莫队
http://codeforces.com/contest/617/problem/E 题意:给出q个查询,每次询问区间内连续异或值为k的有几种情况. 思路:没有区间修改,而且扩展端点,减小端点在前缀 ...
- CODEFORCES 340 XOR and Favorite Number 莫队模板题
原来我直接学的是假的莫队 原题: Bob has a favorite number k and ai of length n. Now he asks you to answer m queries ...
- E. XOR and Favorite Number 莫队 2038: [2009国家集训队]小Z的袜子(hose)
一直都说学莫队,直到现在才学,训练的时候就跪了 T_T,其实挺简单的感觉.其实训练的时候也看懂了,一知半解,就想着先敲.(其实这样是不好的,应该弄懂再敲,以后要养成这个习惯) 前缀异或也很快想出来 ...
- codeforces 617E. XOR and Favorite Number 莫队
题目链接 给n个数, m个询问, 每次询问问你[l, r]区间内有多少对(i, j), 使得a[i]^a[i+1]^......^a[j]结果为k. 维护一个前缀异或值就可以了. 要注意的是 区间[l ...
- Codeforces Round #340 (Div. 2) E XOR and Favorite Number 莫队板子
#include<bits/stdc++.h> using namespace std; <<; struct node{ int l,r; int id; }q[N]; in ...
随机推荐
- lintcode174 删除链表中倒数第n个节点
删除链表中倒数第n个节点 给定一个链表,删除链表中倒数第n个节点,返回链表的头节点. 注意事项 链表中的节点个数大于等于n 您在真实的面试中是否遇到过这个题? Yes 样例 给出链表1->2 ...
- Java学习笔记-13.创建窗口和程序片
1.init()方法:程序片第一次被创建,初次运行初始化程序片时调用. start()方法:每当程序片进入web浏览器中,并且允许程序片启动他的常规操作时调用(特殊的程序片被stop()关闭):同样在 ...
- 【MFC】学习与问题整合
需要源码联系邮件:kangxlchn@163.com 1.新建一个MFC工程(基于对话框) 环境:vs2017 统统NEXT 新建完成后打开MFCPrj.cpp文件 打开类试图 每创建一个MFC项目, ...
- 1208: [HNOI2004]宠物收养所
1208: [HNOI2004]宠物收养所 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 12030 Solved: 4916 Description ...
- UVa 1585 - Score - ACM/ICPC Seoul 2005 解题报告 - C语言
1.题目大意 给出一个由O和X组成的字符串(长度为80以内),每个O的得分为目前连续出现的O的数量,X得分为0,统计得分. 2.思路 实在说不出了,这题没过脑AC的.直接贴代码吧.=_= 3.代码 # ...
- node.js应用--转载
最近,在向大学生们介绍 HTML5 的时候,我想要对他们进行问卷调查,并向他们显示实时更新的投票结果.鉴于此目的,我决定快速构建一个用于此目的的问卷调查应用程序.我想要一个简单的架构,不需要太多不同的 ...
- OpenCV学习4-----K-Nearest Neighbors(KNN)demo
最近用到KNN方法,学习一下OpenCV给出的demo. demo大意是随机生成两团二维空间中的点,然后在500*500的二维空间平面上,计算每一个点属于哪一个类,然后用红色和绿色显示出来每一个点 如 ...
- 小茜(xi)的减肥之路
Description 今天,多年未见的小钧和小江在街头偶遇,小江想看看当年那个蠢蠢的小钧有没有变聪明一些,他灵机一动,说:“当初小茜立了个flag,说一定要减肥,她想着第一天跑一米,第二天跑两米,第 ...
- 软件功能说明书——Thunder团队
爱阅APP功能说明书 一.引言 相信大家都使用过电子书阅读器,相对于纸质版书籍电子书APP做到了环保.易存储.便携.因此我们Thunder团队开发了——爱阅APP,以下内容是Alpha版的功能说明书. ...
- Spring中Controller和RequestMapping的详解
先看一个简单的实例: @Controller @RequestMapping("/hello") public class anyTypeController{ @RequestM ...