XOR and Favorite Number (莫对算法)
4 seconds
256 megabytes
standard input
standard output
Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such thatl ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.
Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.
Print m lines, answer the queries in the order they appear in the input.
6 2 3
1 2 1 1 0 3
1 6
3 5
7
0
5 3 1
1 1 1 1 1
1 5
2 4
1 3
9
4
4
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5,6), (6, 6). Not a single of these pairs is suitable for the second query.
In the second sample xor equals 1 for all subarrays of an odd length.
题意:有n个数和m次询问,每一询问会有一个L和R,表示所询问的区间,
问在这个区间中有多少个连续的子区间的亦或和为k
假设我们现在有一个前缀异或和数组sum[],现在我们要求区间[L,R]的异或的值,
用sum数组表示就是sum[L-1]^sum[R]==K,或者说是K^sum[R]==sum[L-1]
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 2e6 + ;
int n, m, k, L, R, sz, a[maxn];
LL sum[maxn], ans, ANS[maxn];
struct node {
int l, r, id;
node() {}
node(int l, int r, int id): l(l), r(r), id(id) {}
bool operator <(const node & a)const {
if (l / sz == a.l / sz) return r < a.r;
return l < a.l;
}
} qu[maxn];
void add(int x) {
ans += sum[a[x] ^ k];
sum[a[x]]++;
}
void del(int x) {
sum[a[x]]--;
ans -= sum[a[x] ^ k];
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = ; i <= n ; i++) {
scanf("%d", &a[i]);
a[i] ^= a[i - ];
}
for (int i = ; i <= m ; i++) {
scanf("%d%d", &qu[i].l, &qu[i].r);
qu[i].l--;
qu[i].id = i;
}
sz = (int)sqrt(n);
sort(qu + , qu + m + );
L = , R = ;
for (int i = ; i <= m ; i++) {
while(L > qu[i].l) add(--L);
while(R < qu[i].r) add(++R);
while(L < qu[i].l) del(L++);
while(R > qu[i].r) del(R--);
ANS[qu[i].id] = ans;
}
for (int i = ; i <= m ; i++)
printf("%lld\n", ANS[i]);
return ;
}
XOR and Favorite Number (莫对算法)的更多相关文章
- Codeforces617 E . XOR and Favorite Number(莫队算法)
XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法
E. XOR and Favorite Number 题目连接: http://www.codeforces.com/contest/617/problem/E Descriptionww.co Bo ...
- codeforces 617E E. XOR and Favorite Number(莫队算法)
题目链接: E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes i ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法
题目链接:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...
- CodeForces - 617E XOR and Favorite Number 莫队算法
https://vjudge.net/problem/CodeForces-617E 题意,给你n个数ax,m个询问Ly,Ry, 问LR内有几对i,j,使得ai^...^ aj =k. 题解:第一道 ...
- Codeforces 617E XOR and Favorite Number莫队
http://codeforces.com/contest/617/problem/E 题意:给出q个查询,每次询问区间内连续异或值为k的有几种情况. 思路:没有区间修改,而且扩展端点,减小端点在前缀 ...
- CODEFORCES 340 XOR and Favorite Number 莫队模板题
原来我直接学的是假的莫队 原题: Bob has a favorite number k and ai of length n. Now he asks you to answer m queries ...
- E. XOR and Favorite Number 莫队 2038: [2009国家集训队]小Z的袜子(hose)
一直都说学莫队,直到现在才学,训练的时候就跪了 T_T,其实挺简单的感觉.其实训练的时候也看懂了,一知半解,就想着先敲.(其实这样是不好的,应该弄懂再敲,以后要养成这个习惯) 前缀异或也很快想出来 ...
- codeforces 617E. XOR and Favorite Number 莫队
题目链接 给n个数, m个询问, 每次询问问你[l, r]区间内有多少对(i, j), 使得a[i]^a[i+1]^......^a[j]结果为k. 维护一个前缀异或值就可以了. 要注意的是 区间[l ...
- Codeforces Round #340 (Div. 2) E XOR and Favorite Number 莫队板子
#include<bits/stdc++.h> using namespace std; <<; struct node{ int l,r; int id; }q[N]; in ...
随机推荐
- leetcode-全排列详解(回溯算法)
全排列 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2 ...
- Pandas dataframe数据写入文件和数据库
转自:http://www.dcharm.com/?p=584 Pandas是Python下一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作,DataFr ...
- POJ 2455 Secret Milking Machine(最大流+二分)
Description Farmer John is constructing a new milking machine and wishes to keep it secret as long a ...
- Centos下的SVN搭建
需求: 搭建SVN实现本地开发环境,方便线上代码的更新. 步骤: 1. 安装SVN服务 yum install -y subversion 2.创建SVN代码库的目录.创建版本库 mkdir -p / ...
- Thunder团队第六周 - Scrum会议3
Scrum会议3 小组名称:Thunder 项目名称:i阅app Scrum Master:李传康 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传 ...
- dataTables基础函数变量
DataTable下有四个命名空间(namespace),分别是defaults,ext,models,oApi. Defaults:主要是用于初始化表格的一些选项. Ext:拓展项,提供额外的表格选 ...
- PHP利用pcntl_exec突破disable_functions
http://fuck.0day5.com/?p=563 PHP突破Disable_functions执行Linux命令 利用dl函数突破disable_functions执行命令 http://ww ...
- phpcms退出 提示 :退出成功0 。 的解决办法
打开/phpcms/modules/member/index.php 搜索如下代码: showmessage(L('logout_success').$synlogoutstr, $forward); ...
- 【ASP.NET Core】ASP.NET Core API 版本控制
几天前,我和我的朋友们使用 ASP.NET Core 开发了一个API ,使用的是GET方式,将一些数据返回到客户端 APP.我们在前端进行了分页,意味着我们将所有数据发送给客户端,然后进行一些dat ...
- 【bzoj3886】[Usaco2015 Jan]Moovie Mooving 状态压缩dp+二分
题目描述 Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer J ...