CF932E Team Work(第二类斯特林数)
题目
前置:斯特林数\(\Longrightarrow\)点这里
做法
&\sum\limits_{i=1}^n C_n^ii^k\\
&\sum\limits_{i=1}^n C_n^i\sum\limits_{j=0}^iC_i^j\begin{Bmatrix}k\\j\end{Bmatrix}j!\\
&\sum\limits_{i=1}^n \frac{n!}{(n-i)!}\sum\limits_{j=0}^i\frac{\begin{Bmatrix}k\\j\end{Bmatrix}}{(i-j)!}\\
&\sum\limits_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\sum\limits_{i=j}^n\frac{n!}{(n-i)!}\frac{1}{(i-j)!}\\
&\sum\limits_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\sum\limits_{i=j}^n\frac{n!}{(n-j)!}\frac{(n-j)!}{(n-i)!(i-j)!}\\
&\sum\limits_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\frac{n!}{(n-j)!}\sum\limits_{i=j}^nC_{n-j}^{i-j}\\
&\sum\limits_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\frac{n!}{(n-j)!}2^{n-j}\\
\end{aligned}\]
至此我们可以通过\(O(k^2)\)处理第二类斯特林数达到\(O(n^2)\)通过此题
Code
更多斯特林数及反演的姿势\(\Longrightarrow\)点这里
#include<bits/stdc++.h>
typedef int LL;
const LL maxn=5e3+9,mod=1e9+7,inv2=500000004;
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1) ret=1ll*ret*base%mod; base=1ll*base*base%mod; b>>=1;
}return ret;
}
LL ans[maxn][maxn];
inline void Fir(LL n){
ans[1][1]=1;
for(LL i=2;i<=n;++i)
for(LL j=1;j<=i;++j)
ans[i][j]=1ll*(ans[i-1][j-1]+1ll*j*ans[i-1][j]%mod)%mod;
}
inline LL Get(LL l,LL r){
LL ret(1);
for(LL i=l;i<=r;++i) ret=1ll*ret*i%mod;
return ret;
}
LL n,k,ret;
int main(){
scanf("%d%d",&n,&k);
Fir(k);
for(LL j=0,val1=1,val2=Pow(2,n);j<=k;++j,val1=1ll*val1*(n-j+1)%mod,val2=1ll*val2*inv2%mod)
ret=1ll*(ret+1ll*ans[k][j]*val1%mod*val2%mod)%mod;
printf("%d ",ret);
}
CF932E Team Work(第二类斯特林数)的更多相关文章
- CF932E Team Work——第二类斯特林数
题解 n太大,而k比较小,可以O(k^2)做 想方设法争取把有关n的循环变成O(1)的式子 考虑用公式: 来替换i^k 原始的组合数C(n,i)一项,考虑能否和后面的系数分离开来,直接变成2^n处理. ...
- Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )
题目链接 题意 : 其实就是要求 分析 : 先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?) 然后再一步步化简.使得最外层和 N 有关的 ∑ 划掉 这里有个技巧就是 将组合数的表达式放到一边. ...
- 【CF932E】Team Work(第二类斯特林数)
[CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...
- CF932E Team Work(第二类斯特林数)
传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...
- 【cf932E】E. Team Work(第二类斯特林数)
传送门 题意: 求\(\displaystyle \sum_{i=0}^n{n\choose i}i^k,n\leq 10^9,k\leq 5000\). 思路: 将\(i^k\)用第二类斯特林数展开 ...
- Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数
题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
随机推荐
- hdu 5078
Osu! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Total Sub ...
- Duilib教程-自动布局1
我们要实现一个带标题栏和状态栏的程序,同时要支持拉伸,即包括最小化.最大化,图如下: XML: <?xml version="1.0" encoding="utf- ...
- js获取上个月的第一天和最后一天
var now = new Date(); var fd = new Date(now.getFullYear(), now.getMonth()-1 ,1).toLocaleDateString() ...
- Spring Data 关于Repository的介绍(四)
Repository类的定义: public interface Repository<T, ID extends Serializable> { } 1)Repository是一个空接口 ...
- 【转】Mysql的配置文件详解
[client]port = 3306socket = /tmp/mysql.sock [mysqld]port = 3306socket = /tmp/mysql.sock basedir = /u ...
- 从一个git仓库迁移到另外一个git仓库
1 从原地址克隆一份裸版本库,比如原本托管于 GitHub. git clone --bare git://github.com/username/project.git git操作的结果会有一个XX ...
- 匿名函数(lambda)在列表生成式和生成器中的应用示例
匿名函数(lambda)在列表生成式和生成器中的应用示例 列表生成式中实例 先看题: 以下代码的输出是什么?请给出答案并解释: def func(): return [lambda x: x * i ...
- Linux(1)- 服务器核心知识、Linux入门、VMware与centeos安装、远程连接linux、linux基本命令使用
一.服务器核心知识 1.电脑和电脑的硬件组成 现在的人们几乎无时无刻不在使用着电脑!不管是桌上型电脑(桌机).笔记型电脑(笔电).平板电脑,还是智慧型手机等等,这些东西都算是电脑.虽然接触这么多,但是 ...
- EC断言16种判断
expected_conditions一般也简称EC,本篇先介绍下有哪些功能,后续更新中会单个去介绍. title_is: 判断当前页面的title是否完全等于(==)预期字符串,返回布尔值 titl ...
- 006-基于hyperledger fabric1.4( 官方文档)编写第一个应用【外部nodejs调用】
一.概述 官方原文地址 Writing Your First Application如果对fabric网络的基本运行机制不熟悉的话,请看这里. 注意:本教程是对fabric应用以及如何使用智能合约的简 ...