题目

CF932E Team Work

前置:斯特林数\(\Longrightarrow\)点这里

做法

\[\begin{aligned}\\
&\sum\limits_{i=1}^n C_n^ii^k\\
&\sum\limits_{i=1}^n C_n^i\sum\limits_{j=0}^iC_i^j\begin{Bmatrix}k\\j\end{Bmatrix}j!\\
&\sum\limits_{i=1}^n \frac{n!}{(n-i)!}\sum\limits_{j=0}^i\frac{\begin{Bmatrix}k\\j\end{Bmatrix}}{(i-j)!}\\
&\sum\limits_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\sum\limits_{i=j}^n\frac{n!}{(n-i)!}\frac{1}{(i-j)!}\\
&\sum\limits_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\sum\limits_{i=j}^n\frac{n!}{(n-j)!}\frac{(n-j)!}{(n-i)!(i-j)!}\\
&\sum\limits_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\frac{n!}{(n-j)!}\sum\limits_{i=j}^nC_{n-j}^{i-j}\\
&\sum\limits_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\frac{n!}{(n-j)!}2^{n-j}\\
\end{aligned}\]

至此我们可以通过\(O(k^2)\)处理第二类斯特林数达到\(O(n^2)\)通过此题

Code

更多斯特林数及反演的姿势\(\Longrightarrow\)点这里

#include<bits/stdc++.h>
typedef int LL;
const LL maxn=5e3+9,mod=1e9+7,inv2=500000004;
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1) ret=1ll*ret*base%mod; base=1ll*base*base%mod; b>>=1;
}return ret;
}
LL ans[maxn][maxn];
inline void Fir(LL n){
ans[1][1]=1;
for(LL i=2;i<=n;++i)
for(LL j=1;j<=i;++j)
ans[i][j]=1ll*(ans[i-1][j-1]+1ll*j*ans[i-1][j]%mod)%mod;
}
inline LL Get(LL l,LL r){
LL ret(1);
for(LL i=l;i<=r;++i) ret=1ll*ret*i%mod;
return ret;
}
LL n,k,ret;
int main(){
scanf("%d%d",&n,&k);
Fir(k);
for(LL j=0,val1=1,val2=Pow(2,n);j<=k;++j,val1=1ll*val1*(n-j+1)%mod,val2=1ll*val2*inv2%mod)
ret=1ll*(ret+1ll*ans[k][j]*val1%mod*val2%mod)%mod;
printf("%d ",ret);
}

CF932E Team Work(第二类斯特林数)的更多相关文章

  1. CF932E Team Work——第二类斯特林数

    题解 n太大,而k比较小,可以O(k^2)做 想方设法争取把有关n的循环变成O(1)的式子 考虑用公式: 来替换i^k 原始的组合数C(n,i)一项,考虑能否和后面的系数分离开来,直接变成2^n处理. ...

  2. Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )

    题目链接 题意 : 其实就是要求 分析 : 先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?) 然后再一步步化简.使得最外层和 N 有关的 ∑ 划掉 这里有个技巧就是 将组合数的表达式放到一边. ...

  3. 【CF932E】Team Work(第二类斯特林数)

    [CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...

  4. CF932E Team Work(第二类斯特林数)

    传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...

  5. 【cf932E】E. Team Work(第二类斯特林数)

    传送门 题意: 求\(\displaystyle \sum_{i=0}^n{n\choose i}i^k,n\leq 10^9,k\leq 5000\). 思路: 将\(i^k\)用第二类斯特林数展开 ...

  6. Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数

    题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...

  7. 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

    [BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...

  8. 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)

    [BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...

  9. HDU - 4625 JZPTREE(第二类斯特林数+树DP)

    https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...

随机推荐

  1. EF性能分析(一):动态SQL性能差.从OrderBy开始分析

    1. 问题背景 在我的力推下,部门业务开发转向ABP,其中ORM采用的是EntityFrameworkCore. 然而,在数据查询方面,出现了重大的性能问题... 请看代码: //在一个百万数据量的表 ...

  2. Effective JavaScript Item 55 接受配置对象作为函数參数

    接受配置对象作为函数參数 尽管保持函数接受的參数的顺序非常重要,可是当函数可以接受的參数达到一定数量时.也会让用户非常头疼: var alert = new Alert(100, 75, 300, 2 ...

  3. Lumen 队列

    队列 简介 连接 Vs. 队列 驱动的必要设置 创建任务类 生成任务类 任务类结构 分发任务 延迟分发 任务链 自定义队列 & 连接 指定任务最大尝试次数 / 超时值 频率限制 错误处理 运行 ...

  4. java集合 stream 相关用法(1)

    java8新增一种流式数据,让操作集合数据更简单方便. 定义基本对象: public class Peo { private String name; private String id; publi ...

  5. Cannot call sendRedirect() after the response has been committed错误;

    Cannot call sendRedirect() after the response has been committed提示信息其实很清楚,如果response已经提交过了,就无法再发送sen ...

  6. JAVA基础面试(五5)

    41.a.hashCode() 有什么用?与 a.equals(b) 有什么关系?        hashCode() 方法对应对象整型的 hash 值.它常用于基于 hash 的集合类,如 Hash ...

  7. sql 存储过程,最简单的添加和修改

    数据库表结构  <1>新增数据,并且按照"name" 字段查询,如果重复返回“error”=-100 ,如果成功返回ID,如果失败ID=0 USE [数据库]GOSET ...

  8. vs git .vs12.suo

    GIT无法自动忽略SUO文件的解决方法 最近发现一个巨烦人的问题,项目里明明已经通过gitignore忽略了.suo文件,但是每次git pull的时候总是还得到.suo文件冲突的提示,也就是说git ...

  9. tfs+git

    TFS+GIT 一:背景介绍 技术团队的代码管理工具原来使用的是纯TFS方案,使用两年后发现一些问题:体积太大,每次新建一个分支需要本地下载一份代码:操作不便,功能分支的建立.合并不方便,本地有很多同 ...

  10. 【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组

    [BZOJ4382][POI2015]Podział naszyjnika Description 长度为n的一串项链,每颗珠子是k种颜色之一. 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相 ...