操作:
YARN→Config→Advanced→Schedule
 capacity-scheduler=null
yarn.scheduler.capacity.default.minimum-user-limit-percent=
yarn.scheduler.capacity.maximum-am-resource-percent=0.2
yarn.scheduler.capacity.maximum-applications=
yarn.scheduler.capacity.node-locality-delay=
yarn.scheduler.capacity.root.accessible-node-labels=*
yarn.scheduler.capacity.root.acl_administer_queue=*
yarn.scheduler.capacity.root.capacity=
yarn.scheduler.capacity.root.default.acl_administer_jobs=*
yarn.scheduler.capacity.root.default.acl_submit_applications=*
yarn.scheduler.capacity.root.default.capacity=
yarn.scheduler.capacity.root.default.maximum-capacity=
yarn.scheduler.capacity.root.default.state=RUNNING
yarn.scheduler.capacity.root.default.user-limit-factor=
yarn.scheduler.capacity.root.queues=Support,Marketing,Engineering
yarn.scheduler.capacity.root.Engineering.Development.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.Development.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.Development.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.Development.capacity=
yarn.scheduler.capacity.root.Engineering.Development.minimumaximum-capacity=
yarn.scheduler.capacity.root.Engineering.Development.state=RUNNING
yarn.scheduler.capacity.root.Engineering.Development.user-limit-factor=
yarn.scheduler.capacity.root.Engineering.QE.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.QE.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.QE.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.QE.capacity=
yarn.scheduler.capacity.root.Engineering.QE.maximum-capacity=
yarn.scheduler.capacity.root.Engineering.QE.state=RUNNING
yarn.scheduler.capacity.root.Engineering.QE.user-limit-factor=
yarn.scheduler.capacity.root.Engineering.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.capacity=
yarn.scheduler.capacity.root.Engineering.maximum-capacity=
yarn.scheduler.capacity.root.Engineering.queues=Development,QE
yarn.scheduler.capacity.root.Engineering.state=RUNNING
yarn.scheduler.capacity.root.Engineering.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.Advertising.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.Advertising.acl_administer_queue=*
yarn.scheduler.capacity.root.Marketing.Advertising.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.Advertising.capacity=
yarn.scheduler.capacity.root.Marketing.Advertising.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.Advertising.state=STOPPED
yarn.scheduler.capacity.root.Marketing.Advertising.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.Sales.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.Sales.acl_administer_queue=*
yarn.scheduler.capacity.root.Marketing.Sales.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.Sales.capacity=
yarn.scheduler.capacity.root.Marketing.Sales.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.Sales.minimum-user-limit-percent=
yarn.scheduler.capacity.root.Marketing.Sales.state=RUNNING
yarn.scheduler.capacity.root.Marketing.Sales.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.capacity=
yarn.scheduler.capacity.root.Marketing.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.queues=Sales,Advertising
yarn.scheduler.capacity.root.Marketing.state=RUNNING
yarn.scheduler.capacity.root.Marketing.user-limit-factor=
yarn.scheduler.capacity.root.Support.Services.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.Services.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.Services.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.Services.capacity=
yarn.scheduler.capacity.root.Support.Services.maximum-capacity=
yarn.scheduler.capacity.root.Support.Services.minimum-user-limit-percent=
yarn.scheduler.capacity.root.Support.Services.state=RUNNING
yarn.scheduler.capacity.root.Support.Services.user-limit-factor=
yarn.scheduler.capacity.root.Support.Training.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.Training.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.Training.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.Training.capacity=
yarn.scheduler.capacity.root.Support.Training.maximum-capacity=
yarn.scheduler.capacity.root.Support.Training.state=RUNNING
yarn.scheduler.capacity.root.Support.Training.user-limit-factor=
yarn.scheduler.capacity.root.Support.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.capacity=
yarn.scheduler.capacity.root.Support.maximum-capacity=
yarn.scheduler.capacity.root.Support.queues=Training,Services
yarn.scheduler.capacity.root.Support.state=RUNNING
yarn.scheduler.capacity.root.Support.user-limit-factor=
yarn.scheduler.capacity.root.unfunded.capacity=
 
全靠手写了。
然后通过链接进入到resource manager页面,选择左侧链接,点击Scheduler,就可以看到这次添加的队列,support,marketing以及Engineering。
参考:

Ambari的资源池管理的更多相关文章

  1. Hadoop - Ambari集群管理剖析

    1.Overview Ambari是Apache推出的一个集中管理Hadoop的集群的一个平台,可以快速帮助搭建Hadoop及相关以来组件的平台,管理集群方便.这篇博客记录Ambari的相关问题和注意 ...

  2. Ambari大数据的管理利器

    概述 一个完全开源的管理平台,用于供应,管理,监控和保护Apache Hadoop集群.Apache Ambari客户管理和操作Hadoop集群 Apache Ambari作为Hortonworks数 ...

  3. cocos2D-x 3.5 引擎解析之--引用计数(Ref),自己主动释放池(PoolManager),自己主动释放池管理器( AutoreleasePool)

    #include <CCRef.h> Ref is used for reference count manangement. If a classinherits from Ref. C ...

  4. Ambari Log Search

    文章作者:luxianghao 文章来源:http://www.cnblogs.com/luxianghao/p/8630195.html  转载请注明,谢谢合作. 免责声明:文章内容仅代表个人观点, ...

  5. kvm虚拟化管理平台WebVirtMgr部署-完整记录(1)

    公司机房有一台2U的服务器(64G内存,32核),由于近期新增业务比较多,测试机也要新增,服务器资源十分有限.所以打算在这台2U服务器上部署kvm虚拟化,虚出多台VM出来,以应对新的测试需求.当KVM ...

  6. 基于KVM、Xen、OpenVZ等虚拟化技术的WEB在线管理工具

    1.Proxmox proxmox是一个开源的虚拟化管理平台,支持集群管理和HA.在存储方面,proxmox除了支持常用的lvm,nfs,iscsi,还支持集群存储glusterfs和ceph,这也是 ...

  7. Ambari配置Hive,Hive的使用

    mysql安装,hive环境的搭建 ambari部署hadoop 博客大牛:董的博客 ambari使用 ambari官方文档 hadoop 2.0 详细配置教程 使用Ambari快速部署Hadoop大 ...

  8. 基于Ambari构建自己的大数据平台产品

    目前市场上常见的企业级大数据平台型的产品主流的有两个,一个是Cloudera公司推出的CDH,一个是Hortonworks公司推出的一套HDP,其中HDP是以开源的Ambari作为一个管理监控工具,C ...

  9. 小规模kvm宿主机管理-webvirtmgr安装

    1.前言WebVirtMgr是近两年来发展较快,比较活跃,非常清新的一个KVM管理平台,提供对宿主机和虚机的统一管理,它有别于kvm自带的图形管理工具(virtual machine manager) ...

随机推荐

  1. EF Code-First 学习之旅 从已存在的数据库进行Code First

    namespace EFDemo { using System; using System.Data.Entity; using System.ComponentModel.DataAnnotatio ...

  2. IDEA 修改JSP和后端数据后,页面刷新可以实时更新

    情况:刚开始使用IDEA进行开发时,发现修改JSP页面或者后端数据后,再刷新浏览器页面,发现没有变化,页面无更新. 这样就导致不得不频繁重启tomcat服务器.非常麻烦 解决方法: 步骤1. 先设置t ...

  3. Python中有趣的数据结构

    链表 链表的基本操作 >>> a = [66.25,333,333,1,1234.5] >>> print a.count(333),a.count(66.25), ...

  4. hackerrankWeek of Code 31

    hackerrankWeek of Code 31 A.Beautiful Word B.Accurate Sorting C.Zero-One Game D.Spanning Tree Fracti ...

  5. angularjs笔记(1)

    https://github.com/angular/angular.js/blob/master/src/ng/q.js 1.ng-app 指令告诉 AngularJS,<div> 元素 ...

  6. 手把手教你用Vue2+webpack+node开发一个H5 app

    手把手教你用Vue2+webpack+node开发一个H5 app ​前一篇vue2 + webpack + node 开发一个小demo说到了用vue的一些基本用法,这一篇就讲一个复杂一点的更完整的 ...

  7. javascript练习题·(1)

    1.参数集合是什么? (function(){ return typeof arguments; })(); 的结果是? typeOf只能以字符串的形式返回数据类型 js中包括6种数据类型--Numb ...

  8. How to Fix “ShellExecute failed (2): Is this command correct?” on Notepad++

    Problem: When you click right-click->Edit with Notepad ++ and get the error “ShellExecute failed ...

  9. 【Python】内置函数清单

    Python内置(built-in)函数随着python解释器的运行而创建.在Python的程序中,你可以随时调用这些函数,不需要定义.最常见的内置函数是: print("Hello Wor ...

  10. 【Hive】建表

    1.建表 Create [EXTERNAL] TABLE [IF NOT EXISTS] table_name ( [(col_name data_type [COMMENT col_comment] ...