操作:
YARN→Config→Advanced→Schedule
 capacity-scheduler=null
yarn.scheduler.capacity.default.minimum-user-limit-percent=
yarn.scheduler.capacity.maximum-am-resource-percent=0.2
yarn.scheduler.capacity.maximum-applications=
yarn.scheduler.capacity.node-locality-delay=
yarn.scheduler.capacity.root.accessible-node-labels=*
yarn.scheduler.capacity.root.acl_administer_queue=*
yarn.scheduler.capacity.root.capacity=
yarn.scheduler.capacity.root.default.acl_administer_jobs=*
yarn.scheduler.capacity.root.default.acl_submit_applications=*
yarn.scheduler.capacity.root.default.capacity=
yarn.scheduler.capacity.root.default.maximum-capacity=
yarn.scheduler.capacity.root.default.state=RUNNING
yarn.scheduler.capacity.root.default.user-limit-factor=
yarn.scheduler.capacity.root.queues=Support,Marketing,Engineering
yarn.scheduler.capacity.root.Engineering.Development.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.Development.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.Development.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.Development.capacity=
yarn.scheduler.capacity.root.Engineering.Development.minimumaximum-capacity=
yarn.scheduler.capacity.root.Engineering.Development.state=RUNNING
yarn.scheduler.capacity.root.Engineering.Development.user-limit-factor=
yarn.scheduler.capacity.root.Engineering.QE.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.QE.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.QE.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.QE.capacity=
yarn.scheduler.capacity.root.Engineering.QE.maximum-capacity=
yarn.scheduler.capacity.root.Engineering.QE.state=RUNNING
yarn.scheduler.capacity.root.Engineering.QE.user-limit-factor=
yarn.scheduler.capacity.root.Engineering.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.capacity=
yarn.scheduler.capacity.root.Engineering.maximum-capacity=
yarn.scheduler.capacity.root.Engineering.queues=Development,QE
yarn.scheduler.capacity.root.Engineering.state=RUNNING
yarn.scheduler.capacity.root.Engineering.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.Advertising.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.Advertising.acl_administer_queue=*
yarn.scheduler.capacity.root.Marketing.Advertising.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.Advertising.capacity=
yarn.scheduler.capacity.root.Marketing.Advertising.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.Advertising.state=STOPPED
yarn.scheduler.capacity.root.Marketing.Advertising.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.Sales.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.Sales.acl_administer_queue=*
yarn.scheduler.capacity.root.Marketing.Sales.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.Sales.capacity=
yarn.scheduler.capacity.root.Marketing.Sales.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.Sales.minimum-user-limit-percent=
yarn.scheduler.capacity.root.Marketing.Sales.state=RUNNING
yarn.scheduler.capacity.root.Marketing.Sales.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.capacity=
yarn.scheduler.capacity.root.Marketing.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.queues=Sales,Advertising
yarn.scheduler.capacity.root.Marketing.state=RUNNING
yarn.scheduler.capacity.root.Marketing.user-limit-factor=
yarn.scheduler.capacity.root.Support.Services.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.Services.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.Services.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.Services.capacity=
yarn.scheduler.capacity.root.Support.Services.maximum-capacity=
yarn.scheduler.capacity.root.Support.Services.minimum-user-limit-percent=
yarn.scheduler.capacity.root.Support.Services.state=RUNNING
yarn.scheduler.capacity.root.Support.Services.user-limit-factor=
yarn.scheduler.capacity.root.Support.Training.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.Training.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.Training.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.Training.capacity=
yarn.scheduler.capacity.root.Support.Training.maximum-capacity=
yarn.scheduler.capacity.root.Support.Training.state=RUNNING
yarn.scheduler.capacity.root.Support.Training.user-limit-factor=
yarn.scheduler.capacity.root.Support.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.capacity=
yarn.scheduler.capacity.root.Support.maximum-capacity=
yarn.scheduler.capacity.root.Support.queues=Training,Services
yarn.scheduler.capacity.root.Support.state=RUNNING
yarn.scheduler.capacity.root.Support.user-limit-factor=
yarn.scheduler.capacity.root.unfunded.capacity=
 
全靠手写了。
然后通过链接进入到resource manager页面,选择左侧链接,点击Scheduler,就可以看到这次添加的队列,support,marketing以及Engineering。
参考:

Ambari的资源池管理的更多相关文章

  1. Hadoop - Ambari集群管理剖析

    1.Overview Ambari是Apache推出的一个集中管理Hadoop的集群的一个平台,可以快速帮助搭建Hadoop及相关以来组件的平台,管理集群方便.这篇博客记录Ambari的相关问题和注意 ...

  2. Ambari大数据的管理利器

    概述 一个完全开源的管理平台,用于供应,管理,监控和保护Apache Hadoop集群.Apache Ambari客户管理和操作Hadoop集群 Apache Ambari作为Hortonworks数 ...

  3. cocos2D-x 3.5 引擎解析之--引用计数(Ref),自己主动释放池(PoolManager),自己主动释放池管理器( AutoreleasePool)

    #include <CCRef.h> Ref is used for reference count manangement. If a classinherits from Ref. C ...

  4. Ambari Log Search

    文章作者:luxianghao 文章来源:http://www.cnblogs.com/luxianghao/p/8630195.html  转载请注明,谢谢合作. 免责声明:文章内容仅代表个人观点, ...

  5. kvm虚拟化管理平台WebVirtMgr部署-完整记录(1)

    公司机房有一台2U的服务器(64G内存,32核),由于近期新增业务比较多,测试机也要新增,服务器资源十分有限.所以打算在这台2U服务器上部署kvm虚拟化,虚出多台VM出来,以应对新的测试需求.当KVM ...

  6. 基于KVM、Xen、OpenVZ等虚拟化技术的WEB在线管理工具

    1.Proxmox proxmox是一个开源的虚拟化管理平台,支持集群管理和HA.在存储方面,proxmox除了支持常用的lvm,nfs,iscsi,还支持集群存储glusterfs和ceph,这也是 ...

  7. Ambari配置Hive,Hive的使用

    mysql安装,hive环境的搭建 ambari部署hadoop 博客大牛:董的博客 ambari使用 ambari官方文档 hadoop 2.0 详细配置教程 使用Ambari快速部署Hadoop大 ...

  8. 基于Ambari构建自己的大数据平台产品

    目前市场上常见的企业级大数据平台型的产品主流的有两个,一个是Cloudera公司推出的CDH,一个是Hortonworks公司推出的一套HDP,其中HDP是以开源的Ambari作为一个管理监控工具,C ...

  9. 小规模kvm宿主机管理-webvirtmgr安装

    1.前言WebVirtMgr是近两年来发展较快,比较活跃,非常清新的一个KVM管理平台,提供对宿主机和虚机的统一管理,它有别于kvm自带的图形管理工具(virtual machine manager) ...

随机推荐

  1. Hibernate关联关系映射之一对一关联关系

    人和身份证之间就是一个典型的一对一关联关系.实现一对一关联关系映射的方式有两种一种是基于外键,一种是基于主键,下面我们先看基于外键的关联方式 首先看他们的实体类 Person类 ? 1 2 3 4 5 ...

  2. mysql全库搜索指定字符串

    mysql全库搜索指定字符串 DELIMITER // DROP PROCEDURE IF EXISTS `proc_FindStrInAllDataBase`; # CALL `proc_FindS ...

  3. DateTime和DateTimeOffset的区别

    1,DateTime 表示时间上的一刻,通常以日期和当天时间来表示. 2, DateTimeOffset 表示一个时间点,通常以相对于协调世界时(UTC)的日期和时间来表示. 3,下面是微软官方给出的 ...

  4. Windows下搭建Apache+Django+Python Web服务环境

    最近在学Django,想用Apache搭建一个服务器环境,因此在网上看了好多资料,很多都是用Python2.6和Apache2.2搭建的环境,不过我还是想用Python35和Apache24来搭建,具 ...

  5. IFE 2015_spring task0002 自学记录

    JavaScript数据类型及语言基础 1. 判断arr是不是一个数组,返回一个bool值. 首先javascript有5大基本数据类型:Undefined,Null,Boolean,Number和S ...

  6. Flask安装配置

    倒腾了一下午了,还是不太顺利,顺便记录一下. 硬件环境:win8.1 64位 + python2.7.9 32位 安装easy_install 需要先下载ez_setup.py(需要复制该链接中的内容 ...

  7. 音悦台mv视频下载

    需要获取的页面: 参考了此处,做了修改,代码如下: #coding:utf-8 import urllib2 import urllib import re import sys import os ...

  8. python----模块知识拓展

    1.hashlib ------configpraser-------- xml hashlib 模块导入:import hashlib 模块说明:用于将信息加密,明文变成密文 功能说明 MD5算法 ...

  9. mysql 字段属性 与 排序

    mysql中常见的数据类型:varchar(n).float.int(n).bigint(n).date.datetime.text 字段属性 默认值:DEFAULT '默认值' 非空:NOT NUL ...

  10. redis memcache rabbitMQ

    Python之路[第九篇]:Python操作 RabbitMQ.Redis.Memcache.SQLAlchemy Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动 ...