Ambari的资源池管理
capacity-scheduler=null
yarn.scheduler.capacity.default.minimum-user-limit-percent=
yarn.scheduler.capacity.maximum-am-resource-percent=0.2
yarn.scheduler.capacity.maximum-applications=
yarn.scheduler.capacity.node-locality-delay=
yarn.scheduler.capacity.root.accessible-node-labels=*
yarn.scheduler.capacity.root.acl_administer_queue=*
yarn.scheduler.capacity.root.capacity=
yarn.scheduler.capacity.root.default.acl_administer_jobs=*
yarn.scheduler.capacity.root.default.acl_submit_applications=*
yarn.scheduler.capacity.root.default.capacity=
yarn.scheduler.capacity.root.default.maximum-capacity=
yarn.scheduler.capacity.root.default.state=RUNNING
yarn.scheduler.capacity.root.default.user-limit-factor=
yarn.scheduler.capacity.root.queues=Support,Marketing,Engineering
yarn.scheduler.capacity.root.Engineering.Development.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.Development.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.Development.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.Development.capacity=
yarn.scheduler.capacity.root.Engineering.Development.minimumaximum-capacity=
yarn.scheduler.capacity.root.Engineering.Development.state=RUNNING
yarn.scheduler.capacity.root.Engineering.Development.user-limit-factor=
yarn.scheduler.capacity.root.Engineering.QE.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.QE.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.QE.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.QE.capacity=
yarn.scheduler.capacity.root.Engineering.QE.maximum-capacity=
yarn.scheduler.capacity.root.Engineering.QE.state=RUNNING
yarn.scheduler.capacity.root.Engineering.QE.user-limit-factor=
yarn.scheduler.capacity.root.Engineering.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.capacity=
yarn.scheduler.capacity.root.Engineering.maximum-capacity=
yarn.scheduler.capacity.root.Engineering.queues=Development,QE
yarn.scheduler.capacity.root.Engineering.state=RUNNING
yarn.scheduler.capacity.root.Engineering.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.Advertising.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.Advertising.acl_administer_queue=*
yarn.scheduler.capacity.root.Marketing.Advertising.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.Advertising.capacity=
yarn.scheduler.capacity.root.Marketing.Advertising.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.Advertising.state=STOPPED
yarn.scheduler.capacity.root.Marketing.Advertising.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.Sales.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.Sales.acl_administer_queue=*
yarn.scheduler.capacity.root.Marketing.Sales.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.Sales.capacity=
yarn.scheduler.capacity.root.Marketing.Sales.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.Sales.minimum-user-limit-percent=
yarn.scheduler.capacity.root.Marketing.Sales.state=RUNNING
yarn.scheduler.capacity.root.Marketing.Sales.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.capacity=
yarn.scheduler.capacity.root.Marketing.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.queues=Sales,Advertising
yarn.scheduler.capacity.root.Marketing.state=RUNNING
yarn.scheduler.capacity.root.Marketing.user-limit-factor=
yarn.scheduler.capacity.root.Support.Services.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.Services.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.Services.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.Services.capacity=
yarn.scheduler.capacity.root.Support.Services.maximum-capacity=
yarn.scheduler.capacity.root.Support.Services.minimum-user-limit-percent=
yarn.scheduler.capacity.root.Support.Services.state=RUNNING
yarn.scheduler.capacity.root.Support.Services.user-limit-factor=
yarn.scheduler.capacity.root.Support.Training.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.Training.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.Training.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.Training.capacity=
yarn.scheduler.capacity.root.Support.Training.maximum-capacity=
yarn.scheduler.capacity.root.Support.Training.state=RUNNING
yarn.scheduler.capacity.root.Support.Training.user-limit-factor=
yarn.scheduler.capacity.root.Support.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.capacity=
yarn.scheduler.capacity.root.Support.maximum-capacity=
yarn.scheduler.capacity.root.Support.queues=Training,Services
yarn.scheduler.capacity.root.Support.state=RUNNING
yarn.scheduler.capacity.root.Support.user-limit-factor=
yarn.scheduler.capacity.root.unfunded.capacity=
Ambari的资源池管理的更多相关文章
- Hadoop - Ambari集群管理剖析
1.Overview Ambari是Apache推出的一个集中管理Hadoop的集群的一个平台,可以快速帮助搭建Hadoop及相关以来组件的平台,管理集群方便.这篇博客记录Ambari的相关问题和注意 ...
- Ambari大数据的管理利器
概述 一个完全开源的管理平台,用于供应,管理,监控和保护Apache Hadoop集群.Apache Ambari客户管理和操作Hadoop集群 Apache Ambari作为Hortonworks数 ...
- cocos2D-x 3.5 引擎解析之--引用计数(Ref),自己主动释放池(PoolManager),自己主动释放池管理器( AutoreleasePool)
#include <CCRef.h> Ref is used for reference count manangement. If a classinherits from Ref. C ...
- Ambari Log Search
文章作者:luxianghao 文章来源:http://www.cnblogs.com/luxianghao/p/8630195.html 转载请注明,谢谢合作. 免责声明:文章内容仅代表个人观点, ...
- kvm虚拟化管理平台WebVirtMgr部署-完整记录(1)
公司机房有一台2U的服务器(64G内存,32核),由于近期新增业务比较多,测试机也要新增,服务器资源十分有限.所以打算在这台2U服务器上部署kvm虚拟化,虚出多台VM出来,以应对新的测试需求.当KVM ...
- 基于KVM、Xen、OpenVZ等虚拟化技术的WEB在线管理工具
1.Proxmox proxmox是一个开源的虚拟化管理平台,支持集群管理和HA.在存储方面,proxmox除了支持常用的lvm,nfs,iscsi,还支持集群存储glusterfs和ceph,这也是 ...
- Ambari配置Hive,Hive的使用
mysql安装,hive环境的搭建 ambari部署hadoop 博客大牛:董的博客 ambari使用 ambari官方文档 hadoop 2.0 详细配置教程 使用Ambari快速部署Hadoop大 ...
- 基于Ambari构建自己的大数据平台产品
目前市场上常见的企业级大数据平台型的产品主流的有两个,一个是Cloudera公司推出的CDH,一个是Hortonworks公司推出的一套HDP,其中HDP是以开源的Ambari作为一个管理监控工具,C ...
- 小规模kvm宿主机管理-webvirtmgr安装
1.前言WebVirtMgr是近两年来发展较快,比较活跃,非常清新的一个KVM管理平台,提供对宿主机和虚机的统一管理,它有别于kvm自带的图形管理工具(virtual machine manager) ...
随机推荐
- [BZOJ1116]CLO[并查集]
看了样例突然发现= =无向边不会增加入度. 然后发现是环套环. 一个环所有点入度都为2. 最后的图无视所有无向边的话大概是这样的(将就一下 然后就可以并查集维护一下联通性... 当x , y属于一个联 ...
- Flume-NG源码阅读之SinkGroups和SinkRunner
在AbstractConfigurationProvider类中loadSinks方法会调用loadSinkGroups方法将所有的sink和sinkgroup放到了Map<String, Si ...
- Red Hat OpenStack 10的新特性
这是Red Hat有史以来最好的版本,同时也是第一个长生命周期版本(最长五年支持),这篇文章会介绍为什么这是你私有云最好的礼物. 由于要使用命令行,以前安装OpenStack是很繁重的工作.这个版本提 ...
- python学习笔记(requests)
昨天用jmeter尝试了下接口测试 在部分接口中要上传文件这里遇到了问题.今天改用python的requests框架试下 先简单的写了个登录的接口.本人初学者,第一次写接口脚本 #!/usr/bin/ ...
- mysql 如果数据不存在,则插入新数据,否则更新 的实现方法
CREATE TABLE `table_test` ( `id` int(11) NOT NULL AUTO_INCREMENT, `my_key` int(11) NOT NULL DEFAULT ...
- linux find命令使用(转)
常用命令 find (目录) [-type d | f] (文件夹 | 文件) -name (名称,可使用正则表达式) find /root -name "*core&q ...
- 利用Python检验你的策略参数是否过拟合(转)
过拟合现象 一般来说,量化研究员在优化其交易策略参数时难免会面临这样一个问题:优化过后的策略在样本内表现一般来说均会超过其在样本外的表现,即参数过拟合.对于参数优化来说,由于优化时存在噪音,过拟合是不 ...
- docker下运行Gitlab CE+Jenkins+Nexus3+docker-registry-frontend
DevOps - Gitlab CE - Jenkins - Nexus Gitlab CE https://hub.docker.com/r/gitlab/gitlab-ce/ https://do ...
- uva 10891 区间dp+记忆化搜索
https://vjudge.net/problem/UVA-10891 给定一个序列x,A和B依次取数,规则是每次只能从头或者尾部取走若干个数,A和B采取的策略使得自己取出的数尽量和最大,A是先手, ...
- 小米手机调试出现DELETE_FAILED_INTERNAL_ERROR Error while Installing APKs
小米手机就是这样子,权限什么的总是做的比较严格,去开发者选项里面找答案,看了下很多都是以前的,在最底下发现了一个选项“启用MIUI优化”,其实一般手机的开发者选项里面是不会有这个选项的.关掉该选项,重 ...