Coach Pang and Uncle Yang both love numbers. Every morning they play a game with number together. In each game the following will be done: 
  1. Coach Pang randomly choose a integer x in [a, b] with equal probability. 
  2. Uncle Yang randomly choose a integer y in [c, d] with equal probability. 
  3. If (x + y) mod p = m, they will go out and have a nice day together. 
  4. Otherwise, they will do homework that day. 
  For given a, b, c, d, p and m, Coach Pang wants to know the probability that they will go out. 

Input  The first line of the input contains an integer T denoting the number of test cases. 
  For each test case, there is one line containing six integers a, b, c, d, p and m(0 <= a <= b <= 10 9, 0 <=c <= d <= 10 9, 0 <= m < p <= 10 9). 
Output  For each test case output a single line "Case #x: y". x is the case number and y is a fraction with numerator and denominator separated by a slash ('/') as the probability that they will go out. The fraction should be presented in the simplest form (with the smallest denominator), but always with a denominator (even if it is the unit). 
Sample Input

4
0 5 0 5 3 0
0 999999 0 999999 1000000 0
0 3 0 3 8 7
3 3 4 4 7 0

Sample Output

Case #1: 1/3
Case #2: 1/1000000
Case #3: 0/1
Case #4: 1/1 给出 a<=x<=b c<=y<=d 求满足 (x+y) % p ==m 的概率
这题需要找规律 然后根据规律求解
每一个数出现的次数为 上升的等差数列 相同的值 下降的等差数列
以下看规律

  然后根据等差数列求和 求解

 #include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-6
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define rtl rt<<1
#define rtr rt<<1|1
#define bug printf("******\n")
#define mem(a,b) memset(a,b,sizeof(a))
#define name2str(x) #x
#define fuck(x) cout<<#x" = "<<x<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("in.txt","r",stdin)
#define gcd(a,b) __gcd(a,b)
#define lowbit(x) x&-x
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int mod = 1e9 + ;
const int maxn = 1e5 + ;
const int INF = 0x3f3f3f3f;
const LL INFLL = 0x3f3f3f3f3f3f3f3fLL;
int _;
LL a, b, c, d, m, p;
LL solveL ( LL L, LL R ) {
LL cnt = L % p;
if ( cnt > m ) cnt = L + p - cnt + m;
else cnt = L + m - cnt ;
if ( cnt > R ) return ;
else {
int temp = cnt - ( a + c ) + ;
int num = ( R - cnt ) / p + ;
LL sum = 1LL * temp * num + 1LL * num * ( num - ) * p / ;
return sum;
}
}
LL solveM ( LL L, LL R ) {
LL cnt = L % p;
if ( cnt > m ) cnt = L + p - cnt + m;
else cnt = L + m - cnt ;
if ( cnt > R ) return ;
else {
LL temp = L - ( a + c ) + ;
LL num = ( R - cnt ) / p + ;
LL sum = 1LL * temp * num;
return sum;
}
}
LL solveR ( LL L, LL R ) {
LL cnt = L % p;
if ( cnt > m ) cnt = L + p - cnt + m;
else cnt = L + m - cnt ;
if ( cnt > R ) return ;
else {
LL temp = ( b + d ) - cnt + ;
LL num = ( R - cnt ) / p + ;
LL sum = 1LL * temp * num - 1LL * num * ( num - ) * p / ;
return sum;
}
}
int main() {
sf ( _ );
int cas = ;
while ( _-- ) {
scanf ( "%lld%lld%lld%lld%lld%lld", &a, &b, &c, &d, &p, &m );
LL L = a + c, R = b + d, l = min ( b + c, a + d ), r = max ( b + c, a + d ), ans = ;
ans += solveL ( L, l - );
ans += solveM ( l, r );
ans += solveR ( r + , R );
LL sum = ( b - a + ) * ( d - c + );
LL g = gcd ( ans, sum );
printf ( "Case #%d: %lld/%lld\n", cas++, ans / g, sum / g );
}
return ;
}

Just Random HDU - 4790 思维题(打表找规律)分段求解的更多相关文章

  1. HDU 4731 Minimum palindrome 打表找规律

    http://acm.hdu.edu.cn/showproblem.php?pid=4731 就做了两道...也就这题还能发博客了...虽然也是水题 先暴力DFS打表找规律...发现4个一组循环节.. ...

  2. 数学--数论--HDU - 6124 Euler theorem (打表找规律)

    HazelFan is given two positive integers a,b, and he wants to calculate amodb. But now he forgets the ...

  3. HDU 3032 (SG打表找规律)

    题意: 有n堆石子,alice先取,每次可以选择拿走一堆石子中的1~x(该堆石子总数) ,也可以选择将这堆石子分成任意的两堆.alice与bob轮流取,取走最后一个石子的人胜利. 思路: 因为数的范围 ...

  4. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  5. HDU 5753 Permutation Bo (推导 or 打表找规律)

    Permutation Bo 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5753 Description There are two sequen ...

  6. HDU 5795 A Simple Nim(SG打表找规律)

    SG打表找规律 HDU 5795 题目连接 #include<iostream> #include<cstdio> #include<cmath> #include ...

  7. HDU 4861 Couple doubi (数论 or 打表找规律)

    Couple doubi 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/D Description DouBiXp has a ...

  8. hdu 3032 Nim or not Nim? (sg函数打表找规律)

    题意:有N堆石子,每堆有s[i]个,Alice和Bob两人轮流取石子,可以从一堆中取任意多的石子,也可以把一堆石子分成两小堆 Alice先取,问谁能获胜 思路:首先观察这道题的数据范围  1 ≤ N ...

  9. HDU 3032 Nim or not Nim?(Multi_SG,打表找规律)

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. vim python自动补全插件:pydiction

    vim python自动补全插件:pydiction 可以实现下面python代码的自动补全: 1.简单python关键词补全 2.python 函数补全带括号 3.python 模块补全 4.pyt ...

  2. 数据库Mysql的学习(六)-子查询和多表操作

    )*0.05 WHERE card_id ='20121xxxxxx'; //子查询就是一个嵌套先计算子查询 SELECT * FROM borrow WHERE book_id =(SELECT b ...

  3. 什么是Spark

    什么是Spark Apache Spark是一个开源集群运算框架, 相对于Hadoop的MapReduce会在运行完工作后将中介数据存放到磁盘中,Spark使用了存储器内运算技术,能在数据尚未写入硬盘 ...

  4. RNN概述-深度学习 -神经网络

    一 RNN概述    前面我们叙述了BP算法, CNN算法, 那么为什么还会有RNN呢?? 什么是RNN, 它到底有什么不同之处? RNN的主要应用领域有哪些呢?这些都是要讨论的问题. 1) BP算法 ...

  5. python SyntaxError: Non-ASCII character '\xe8' in file C:\Users\nwpujun\PycharmProjects\projects\hrl1\hrlAgent\src\li_nn.py on line 52

    解决方法:在文件头部加上这样的一句话 # -*- coding: utf-8 -*- 注意:加在其他的位置可能没用,我就是这样的

  6. php 面试题

    1.通过哪一个函数,可以把错误转换为异常处理? A:set_error_handlerB:error_reportingC:error2exceptionD:catch 正确答案:A 答案分析:set ...

  7. Python中的Numeric

    整型Integer 在Python2.X中,Integer有两种类型,一种是32bit的普通类型,一种是精度无限制的long类型,在数字后面标识l或者L来标识long类型,并且,当32bit发生ove ...

  8. 《剑指Offer》题一~题十

    一.赋值运算符函数 题目:如下为类型CMyString的声明,请为该类型添加赋值运算符函数. class CMyString { public: CMyString(char *pData = nul ...

  9. 欢迎来怼——第14次Scrum会议(10/26)

    一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,冉华 小组照片 二.开会信息 时间:2017/10/26  17:00~17:13(总计13min).地点:计 ...

  10. Thunder团队第五周 - Scrum会议1

    Scrum会议1 小组名称:Thunder 项目名称:i阅app Scrum Master:杨梓瑞 工作照片: 邹双黛在照相,所以图片中没有该同学. 参会成员: 王航:http://www.cnblo ...