【P3355】骑士共存问题(最大流+黑白染色,洛谷)
这个题刚看上去就让人不禁想到一道叫做方格取数问题的题目,事实上也就是这么做,对棋盘黑白染色,然后黑格子连源点,白的连汇点,点权为1。然后判断一下黑格子能影响到的白格子,边权为inf,跑一遍最大流就可以了。
笔者惨痛的实践证明,虽然这些题的,额。。DINIC都一模一样,但是不要复制粘贴。。。粘过来一个没优化的可能让你多找半个多小时的错。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define ll long long
#define inf 50000000
#define re register
#define id n*(i-1)+j
using namespace std;
struct po
{
int from,to,dis,nxt;
}edge[];
int head[],cur[],dep[],n,m,s,t,u,num=-,x,y,l,tot,sum,d;
int nm,a[][];
int dx[]={,-,,,,,-,-,-};
int dy[]={,,,,-,-,-,-,};
inline int read()
{
int x=,c=;
char ch=' ';
while((ch>''||ch<'')&&ch!='-')ch=getchar();
while(ch=='-')c*=-,ch=getchar();
while(ch<=''&&ch>='')x=x*+ch-'',ch=getchar();
return x*c;
}
inline void add_edge(int from,int to,int dis)
{
edge[++num].nxt=head[from];
edge[num].from=from;
edge[num].to=to;
edge[num].dis=dis;
head[from]=num;
}
inline void add(int from,int to,int dis)
{
add_edge(from,to,dis);
add_edge(to,from,);
}
inline bool bfs()
{
memset(dep,,sizeof(dep));
queue<int> q;
while(!q.empty())
q.pop();
dep[s]=;
q.push(s);
while(!q.empty())
{
int now=q.front();
q.pop();
for(re int i=head[now];i!=-;i=edge[i].nxt)
{
int v=edge[i].to;
if(dep[v]==&&edge[i].dis>)
{
dep[v]=dep[now]+;
if(v==t)
return ;
q.push(v);
}
}
}
return ;
}
inline int dfs(int u,int dis)
{
if(u==t)
return dis;
int diss=;
for(re int& i=cur[u];i!=-;i=edge[i].nxt)
{
int v=edge[i].to;
if(dep[v]==dep[u]+&&edge[i].dis!=)
{
int check=dfs(v,min(dis,edge[i].dis));
if(check>)
{
diss+=check;
dis-=check;
edge[i].dis-=check;
edge[i^].dis+=check;
if(dis==) break;
}
}
}
return diss;
}
inline int dinic()
{
int ans=;
while(bfs())
{
for(re int i=;i<=t;i++)
cur[i]=head[i];
while(int d=dfs(s,inf))
ans+=d;
}
return ans;
}
int main()
{
memset(head,-,sizeof(head));
n=read();m=read();
sum=n*n;
for(re int i=;i<=n;i++)
for(re int j=;j<=n;j++)
a[i][j]=;
for(re int i=;i<=m;i++)
{
x=read();y=read();
a[x][y]=;
sum--;
}
s=;t=n*n+;
for(re int i=;i<=n;i++)
for(re int j=;j<=n;j++)
{
if(a[i][j]!=)
{
if((i+j)%==)
{
add(s,id,);
for(re int h=;h<=;h++)
{
int lx=i+dx[h];
int ly=j+dy[h];
if(lx>=&&lx<=n&&ly>=&&ly<=n)
add(id,(lx-)*n+ly,inf);
}
}
else
add(id,t,);
}
}
cout<<sum-dinic();
}
【P3355】骑士共存问题(最大流+黑白染色,洛谷)的更多相关文章
- P3355 骑士共存问题
P3355 骑士共存问题 题目描述 在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n ...
- P3355 骑士共存问题 二分建图 + 当前弧优化dinic
P3355 骑士共存问题 题意: 也是一个棋盘,规则是“马”不能相互打到. 思路: 奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n. 然后di ...
- P3355 骑士共存问题 网络流
骑士共存 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最 ...
- P3355 骑士共存问题 (最小割)
题意:nxn的棋盘 有m个坏点 求能在棋盘上放多少个马不会互相攻击 题解:这个题仔细想想居然和方格取数是一样的!!! 每个马他能攻击到的地方的坐标 (x+y)奇偶性不一样 于是就黑白染色 s-> ...
- [网络流24题] 方格取数问题/骑士共存问题 (最大流->最大权闭合图)
洛谷传送门 LOJ传送门 和太空飞行计划问题一样,这依然是一道最大权闭合图问题 “骑士共存问题”是“方格取数问题”的弱化版,本题解不再赘述“骑士共存问题”的做法 分析题目,如果我们能把所有方格的数都给 ...
- 洛谷P3355 骑士共存问题
题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置 ...
- 【Luogu】P3355骑士共存问题(最小割)
题目链接 像题面那样把棋盘染成红黄点.发现骑士迈一步能到达的点的颜色一定是跟他所在的格子的颜色不同的.于是(woc哪来的于是?这个性质有这么明显吗?)从源点向所有红点连边,从所有黄点向汇点连边,红点向 ...
- P3355 骑士共存问题【洛谷】(二分图最大独立集变形题) //链接矩阵存图
展开 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可 ...
- 2018.08.02 洛谷P3355 骑士共存问题(最小割)
传送门 这题让我联想到一道叫做方格取数问题的题,如果想使摆的更多,就要使不能摆的更少,因此根据骑士的限制条件建图,求出至少有多少骑士不能摆,减一减就行了. 代码: #include<bits/s ...
随机推荐
- 71、Android上对Cookie的读写操作
Cookie是为了辨别用户身份.进行session跟踪而储存在用户本地终端上的数据,在Android中也经常用到,接下来我们介绍Cookie在Android里是如何进行读写的. Cookie其实就 ...
- Pert图简介
活动图,即工程网络技术,又称PERT(Project Evaluation and Review Technique,PERT)技术. 参考地址: http://www.cnblogs.com/jiq ...
- leveldb学习笔记
LevelDB由 Jeff Dean和Sanjay Ghemawat开发. LevelDb是能够处理十亿级别规模Key-Value型数据持久性存储的C++ 程序库. 特别如下: 1.LevelDb是一 ...
- IntelliJ IDEA 工具技巧
IntelliJ IDEA 工具技巧 以下都是自己积累的IntelliJ IDEA 使用技巧,比较零碎,观看不便之处还望海涵,如有错误之处还望指正 自己常用,不懂的可以加群询问:244930845 S ...
- _heap_alloc_base 奔溃,奔溃原因:堆被破坏
现象:程序崩溃的地方比较随机,之前没问题的代码, 可能直接奔溃,多线程下其他地方堆栈被破坏,引起崩溃的时间是不定,所以在其他地方随机性奔溃 检测方法:使用windows工具gflags.exe 开启 ...
- 为何不分类---失效的google image
w满屏的框架,甚至翻页了还是框架,起始user是想看下bootstrap在框架出来前是什么东西.
- pandas 修改列名
原始文件 下面是Excel打开以及pd.read_csv() 打开: 里面只是干巴巴的数据,没有列名,so,需要给其设置列名. Method1 不让第一行数据默认当作列名(默认第一行数据是列名了). ...
- Django - 回顾(2)- 中介模型
一.中介模型 我们之前学习图书管理系统时,设计了Publish.Book.Author.AuthorDetail这样几张表,其中Book表和Author表是多对多关系,处理类似这样简单的多对多关系时, ...
- 搭建ss的步骤
1. 购买vultr产品 购买地址 (这个比较稳定) 2. 更改ssh的端口,混淆一下,我改成了2333 vim /etc/ssh/sshd_config 将里面的port改为2333 更改防火墙规则 ...
- MySQL数据库Date型数据插入问题
MySQL数据库中,Date型数据插入问题,总是提示如下错误: “java.util.Date cannot be cast to java.sql.Date” 解决办法: 1.首先,获取Date型数 ...