【算法】简单数学

【题解】多项式展开:(a*b)%p=(a%p*b%p)%p

#include<cstdio>
#include<algorithm>
#define rep(i,j,k) for(int i=j;i<=k;i++)
using namespace std;
int n,p;
int main()
{
scanf("%d%d",&n,&p);
int ans=;
rep(i,,n)ans=(1ll*ans*i)%p;
printf("%d",ans);
return ;
}

【51NOD-0】1008 N的阶乘 mod P的更多相关文章

  1. 快速幂的类似问题(51Nod 1008 N的阶乘 mod P)

    下面我们来看一个容易让人蒙圈的问题:N的阶乘 mod P. 51Nod 1008 N的阶乘 mod P 看到这个可能有的人会想起快速幂,快速幂是N的M次方 mod P,这里可能你就要说你不会做了,其实 ...

  2. 51 Nod 1008 N的阶乘 mod P【Java大数乱搞】

    1008 N的阶乘 mod P 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 %)   例如:n ...

  3. 51nod OJ P1008 N的阶乘 mod P

    P1008 N的阶乘 mod P OJ:51Nod 链接:"http://www.51nod.com/Challenge/Problem.html#!#problemId=1008" ...

  4. 51nod 1008 N的阶乘 mod P

    输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 %)   例如:n = 10, P = 11,10! = 3628800 3628800 % 11 = 10   Input 两 ...

  5. (数学 尾0的个数) 51nod1003 阶乘后面0的数量

    n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1个0. 收起   输入 一个数N(1 <= N <= 10^9) 输出 输出0的数量 输入样例 5 ...

  6. N的阶乘 mod P

    基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 %)   例如:n = 10, P = 11,10 ...

  7. 51Nod 1058: N的阶乘的长度(斯特林公式)

    1058 N的阶乘的长度  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Inp ...

  8. ZUK Z2 AospExtended-v6.7 Android 9.0可用的谷歌相机Mod.md

    目录 参考资料 系统版本: AospExtended-v6.7-z2_plus-20190821-1940-OFFICIAL.zip cstark27 ×PXv4.1.1_GoogleCamera_7 ...

  9. 51Nod--1008

    1008 N的阶乘 mod P 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 % ...

随机推荐

  1. Python 零碎信息-基础 01

    1. """ 可以插入多行文字. print """ abC 123' 456''" #单引号, 双引号, 也没有关系 " ...

  2. Delphi处理事件函数中的Sender: TObject代表什么?

    下面这个按钮点击事件中,Sender代表谁? procedure Tsomain.ToolButton1Click(Sender: TObject); 是代表事件的拥有者吗? procedure TF ...

  3. Bootstrap 轮播图的使用和理解

    <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="utf-8& ...

  4. windows 2008 iis7 上传大文件限制的真正解决办法

    以前做了一个网站 ,当时本机测试时上传文件大小没有问题,上G也应该可以,可是放在服务器后只能上传小于30M以下文件,当时基本需要也基本在30M以下,就没有管,后在网上发现原来是window2008本身 ...

  5. 当提交的表单类型为multipart/form-data时 后台的dopost则不能使用 setCharset来进行解码了 需要单独对字段使用 原始的new String(req.name("ISO-8859-1"),"utf-8")形式解码了

    当提交的表单类型为multipart/form-data时 后台的dopost则不能使用 setCharset来进行解码了 需要单独对字段使用 原始的new String(req.name(" ...

  6. hdu5575 Discover Water Tank

    题意: 给出个水箱,水箱两侧有无限高的隔板,水箱内有整数高度的隔板将水箱分成n-1份,现在给出m个限制,每个限制表示某个位置的某个高度有水或没水,问最多能同时满足多少个限制.n,m<=2*10^ ...

  7. html的body内标签之input系列1

    1. Form的作用:提交当前的表单. 类似于去了银行提交的纸质单子,递到后台去办理相关业务. text,password只有输入的功能:button,submit只有点击的功能.想要把这些信息提交, ...

  8. CentOS 文件及目录等

    1.在linux中一切皆是文件,只是类型不同,通过ls -l看到的一个字母表示文件的类型 -:普通文件. d:目录文件. l:链接文件. b:块设备文件. c:字符设备文件. p:管道文件. 2.文件 ...

  9. [CH弱省胡策R2]TATT

    description 洛谷 data range \[ n\le 5\times 10^4\] solution 这就是四维偏序了... 好象时间复杂度是\(O(n^{\frac{5}{3}})\) ...

  10. [luogu5176] 公约数

    题目描述 求 \[ \sum_{i=1}^n\sum_{j=1}^m\sum_{k=1}^p\gcd(i\cdot j,i\cdot k,j\cdot k)\times \gcd(i,j,k)\tim ...