上帝与集合的正确用法

Time Limit: 5 Sec  Memory Limit: 128 MB
[Submit][Status][Discuss]

Description

  

Input

  第一行一个T,接下来T行,每行一个正整数p,代表你需要取模的值。

Output

  T行,每行一个正整数,为答案对p取模后的值。

Sample Input

  3
  2
  3
  6

Sample Output

  0
  1
  4

HINT

  对于100%的数据,T<=1000,p<=10^7

Solution

  我们运用欧拉定理:

  然后还有一个定理:一个数在执行log次操作后,值不会改变。

  然后就可以直接求了。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ;
const int INF = ; int T,x;
int phi[ONE],pn; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} int Quickpow(int a,int b,int MOD)
{
int res = ;
while(b)
{
if(b & ) res = (s64)res * a % MOD;
a = (s64)a * a % MOD;
b >>= ;
}
return res;
} int Getphi(int n)
{
int res = n;
for(int i=; i*i<=n; i++)
if(n % i == )
{
res = res/i*(i-);
while(n % i == ) n /= i;
}
if(n != ) res = res/n*(n-);
return res;
} int Deal(int p)
{
pn = ; phi[] = p;
while(p != ) phi[++pn] = p = Getphi(p);
phi[++pn] = ; int a = ;
for(int i=pn; i>=; i--)
{
if(a >= phi[i]) a = a%phi[i] + phi[i];
a = (s64)Quickpow(, a, phi[i-]);
if(!a) a = phi[i-];
} return a % phi[];
} int main()
{
T = get();
while(T--)
{
x = get();
printf("%d\n", Deal(x));
}
}

【BZOJ3884】上帝与集合的正确用法 [欧拉定理]的更多相关文章

  1. BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  2. BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)

    Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 3860  Solved: 1751[Submit][Status][Discuss] Descripti ...

  3. bzoj3884: 上帝与集合的正确用法 扩展欧拉定理

    题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...

  4. BZOJ3884 上帝与集合的正确用法 【欧拉定理】

    题目 对于100%的数据,T<=1000,p<=10^7 题解 来捉这道神题 欧拉定理的一般形式: \[a^{m} \equiv a^{m \mod \varphi(p) + [m \ge ...

  5. bzoj3884上帝与集合的正确用法

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  6. [BZOJ3884] 上帝与集合的正确用法 (欧拉函数)

    题目链接:  https://www.lydsy.com/JudgeOnline/problem.php?id=3884 题目大意: 给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M ...

  7. bzoj3884 上帝与集合的正确用法

    a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...

  8. bzoj3884: 上帝与集合的正确用法 欧拉降幂公式

    欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...

  9. bzoj千题计划264:bzoj3884: 上帝与集合的正确用法

    http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...

随机推荐

  1. C与C++,面向过程与面向对象

    C与C++在电梯处理上的不同 (注:个人理解) 对比区别: C语言程序制定具体流程,按流程逐步进行. C++程序将过程结构化,需要使用时利用接口访问与调用不同功能的类结构结构. 电梯类代码 电梯类定义 ...

  2. java实现几种简单的排序算法

    public class SimpleAri { public static void main(String[] args) { int[] t = {11, 21, 22, 1, 6, 10, 3 ...

  3. 全排列 next_permutation() 函数的用法

    在头文件<algorithm>里面有如下代码: int a[]; do { } while(next_permutation(a,a+n)); 可产生1~n的全排列有如下代码: #incl ...

  4. TCP系列29—窗口管理&流控—3、Nagle算法

    一.Nagle算法概述 之前我们介绍过,有一些交互式应用会传递大量的小包(称呼为tinygrams),这些小包的负载可能只有几个bytes,但是TCP和IP的基本头就有40bytes,如果大量传递这种 ...

  5. 刚装的vs无法运行正确的程序

  6. 如何取得dbgrid中未保存(post)的值(50分)

    比如说处在编辑状态时,想取得当前记录值 Dataset.fields[0].Value 就是当前值:Dataset.fields[0].OldValue 就是原始值. 呵呵,我指得是在编辑时,就是按键 ...

  7. 在js中对日期的加减法

    以在某个日期上加减天数来说,其实只要调用Date对象的setDate()函数就可以了,对月份来说,使用setMonth(),具体方法如下:      function addDate(date, da ...

  8. BZOJ 2460 元素(贪心+线性基)

    显然线性基可以满足题目中给出的条件.关键是如何使得魔力最大. 贪心策略是按魔力排序,将编号依次加入线性基,一个数如果和之前的一些数异或和为0就跳过他. 因为如果要把这个数放进去,那就要把之前的某个数拿 ...

  9. BZOJ3534:[SDOI2014]重建——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3534 https://www.luogu.org/problemnew/show/P3317 T国 ...

  10. BZOJ1854:[SCOI2010]连续攻击游戏——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1854 https://www.luogu.org/problemnew/show/P1640 lxh ...