有了bzoj1430的经验解决这题就不是什么难事了
首先考虑度数确定的点,令tot=sigma(d[i]-1)
首先给这tot个数分配prufer编码的位置有C(tot,n-2)种方案
每个方案中是可以进行可重复排列的,对应tot!/[(d[1]-1)!*(d[2]-1)!*…*(d[k]-1)!] 这里都是已确定的度数的点
下面考虑无所谓的点,这些可以在prufer序列中随意分配
因此答案是m^(n-2-tot) (m表示未确定度数的点的个数)
根据乘法原理答案就是C(tot,n-2)*m^(n-2-tot)*tot!/[(d[1]-1)!*(d[2]-1)!*…*(d[k]-1)!]
=(n-2)!*m^(n-2-tot)/[(d[1]-1)!*(d[2]-1)!*…*(d[k]-1)!*(n-2-tot)!]
肯定要高精度,但是我们要尽量避免除法
考虑到这里计算出的方案一定是整数,于是我们可以先质因数分解,然后消去,这要就是单精度的高精度乘法了

 var d:array[..,..] of longint;
a,p,c:array[..] of longint;
ans:array[..] of longint;
l,i,m,x,n,w,j,t:longint;
f:boolean; procedure mul(x,y:longint);
var i,j,u,v:longint;
begin
for i:= to y do
begin
v:=;
for j:= to l do
begin
u:=ans[j]*x+v;
v:=u div ;
ans[j]:=u mod ;
end;
while v> do
begin
inc(l);
ans[l]:=v mod ;
v:=v div ;
end;
end;
end; begin
readln(n);
for i:= to n do
begin
f:=true;
for j:= to trunc(sqrt(i)) do
if i mod j= then
begin
f:=false;
break;
end;
if f then
begin
inc(t);
p[t]:=i;
end;
end;
for i:= to n do
begin
readln(a[i]);
if a[i]<>- then m:=m+a[i]-
else inc(w);
end;
for i:= to n- do
begin
for j:= to t do
d[i,j]:=d[i-,j];
x:=i;
j:=;
while x<> do //预处理阶乘的质因数分解
begin
while (x<>) and (x mod p[j]=) do
begin
x:=x div p[j];
inc(d[i,j]);
end;
inc(j);
end;
end;
ans[]:=;
l:=;
x:=w;
j:=;
while x<> do //m^(n--tot)的质因数分解
begin
while (x<>) and (x mod p[j]=) do
begin
x:=x div p[j];
c[j]:=c[j]+(n--m);
end;
inc(j);
end; for i:= to t do
c[i]:=c[i]+d[n-,i]-d[n--m,i]; for i:= to n do
if a[i]<>- then
begin
for j:= to t do
c[j]:=c[j]-d[a[i]-,j];
end;
for i:= to t do
mul(p[i],c[i]);
for i:=l downto do
write(ans[i]);
writeln;
end.

bzoj1005的更多相关文章

  1. 【bzoj1005】 HNOI2008—明明的烦恼

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 (题目链接) 题意 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多 ...

  2. BZOJ1005 HNOI2008明明的烦恼(prufer+高精度)

    每个点的度数=prufer序列中的出现次数+1,所以即每次选一些位置放上某个点,答案即一堆组合数相乘.记一下每个因子的贡献分解一下质因数高精度乘起来即可. #include<iostream&g ...

  3. 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)

    [BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...

  4. 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

    [BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...

  5. [BZOJ1005]Prufer数列+排列组合

    一棵树的Prufer数列 每次在剩下的树中找到标号最小的叶子节点(对于无根树而言即是度数为1的节点),删去. 同时将其父节点(即与其相连的唯一点)加入Prufer数列当中. 一个Prufer数列所对应 ...

  6. BZOJ1005明明的烦恼 Prufer + 分解質因數 + 高精度

    @[高精度, Prufer, 質因數分解] Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多 ...

  7. 「BZOJ1005」[HNOI2008] 明明的烦恼

    「BZOJ1005」[HNOI2008] 明明的烦恼 先放几个prufer序列的结论: Prufer序列是一种对有标号无根树的编码,长度为节点数-2. 具体存在无根树转化为prufer序列和prufe ...

  8. bzoj1005 [HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description ...

  9. 【BZOJ1005】【HNOI2008】明明的烦恼

    又是看黄学长的代码写的,估计我的整个BZOJ平推计划都要看黄学长的代码写 原题: 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连 ...

  10. 【bzoj1005】[HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4175  Solved: 1660[Submit][Stat ...

随机推荐

  1. Java基础知识强化之集合框架笔记38:Set集合之Set集合概述和特点

    1. Set集合概述和特点 Collection            |--List                     有序(存储顺序和取出顺序一致),可重复            |--Se ...

  2. Java中ArrayList问题:删除一个ArrayList中的重复元素,注意留意一个问题

    该问题有两种方法: 一 利用两个数组,此法简单,不讨论 二 利用一个数组,从第0个开始依次取元素,并在其后元素中查找是否有该元素,有则删掉后面的重复元素,依次遍历.---但是这种情况要特别注意,当后续 ...

  3. 剑指offer: 38 数字在排序数组中出现的次数

    题目描述 统计一个数字在排序数组中出现的次数.例如输入排序数组{1,2,3,3,3,3,4,5} 和数字3,输出4. 思路如下 1. 预估时间复杂度,最复杂情况是,顺序扫描,统计K出现的次数,时间复杂 ...

  4. codevs 1170 双栈排序

    /* 好题啊 好题啊 而然还是看了一眼题解啊 有那么一点思路 但是离写出代码还很远 考虑必须分开放倒两个栈里的情况 即存在i<j<k 有 a[k]<a[i]<a[j] 这里RM ...

  5. 未能加载文件或程序集“Newtonsoft.Json, Version=4.5.0.0[已解决]

    在使用百度UEditor,不小心将Newtonsoft.Json,升级了,然后就报的一个错,说: 其他信息: 未能加载文件或程序集“Newtonsoft.Json, Version=4.5.0.0, ...

  6. LaTeX 中插入数学公式

    一.常用的数学符号 1.小写希腊字母 \alpha \nu \beta \xi \gamma o \delta \pi \epsilon \rho \zeta \sigma \eta \tau \th ...

  7. move file create directory.

    If we want to move file to the directory that does not exist,and if we perform a File.Move,it will r ...

  8. 详细查看数据库SQL执行计划

    DBCC DROPCLEANBUFFERS 清除数据缓存DBCC FREEPROCCACHE  清除执行计划缓存 SET SHOWPLAN_XML ON 此语句导致 SQL Server 不执行 Tr ...

  9. 删除我的电脑中360随身WiFi云U盘的图标

    可通过删除注册表的方法 运行-regedit 找到这个项 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\My ...

  10. CI 笔记3 (easyui 的layout布局,最小化layout原型)

    在做easyui的layout的布局时,最小化一个原型,分2步,一个是div的父标签,一个是body做父标签,全屏的. 步骤分别为: 在设置的5个区中,div的最后一个,必须是data-options ...