POJ3274-牛的属性-HASH-ACM
原题:POJ3274
参考:进击的阿俊
已知有n头牛,用一个K位二进制数Ak,Ak-1,...,A1表示一头牛具有的特征,Ai=1表示具有特征i。现给定按顺序排列的N头牛的k位特征值,称某个连续范围内“特征平衡”,假如在这个范围内,拥有各个特征的牛的数量都相等。求最大“特征平衡”连续范围。
分析:
用sum[i][j]( 1<=i<=n, 1<=k<=j)表示1到第i头牛中具有特征j的牛的数量。问题转化为求解满足sum[i][l] - sum[j][l] = sum[i][1] - sum[j][1](l = 1,2,..,k)的最大i - j的值。很容易想到最简单的方法,通过令d = n to 1,判断是否存在i,使得sum[i + d][j] - sum[i][j] = sum[i + d][1] - sum[i][j],时间复杂度为O(n*n*k)。由于n的最大值能达到100000,必须选择一个更加优化的方法。
1)容易验证,sum[i][l] - sum[j][l] = sum[i][1] - sum[j][1] ( l = 1,2,..,k ) 等价于sum[i][l] - sum[i][1] = sum[j][l] - sum[j][1] ( l = 1,2,...k )。因此令d[i][j] = sum[i][j] - sum[i][1] ,问题就转化为求解使得d[i][j] = d[i + size][j]的最大size。
2)为进一步简化算法,对于任意 1<= i <=n, 令sig[i] = (d[i][1] + d[i][2] + ... +d[i][k] ) % m (m为一个较大的质数)。这样,若对于i和j, sig[i] != sig[j],那么必定不会满足d[i][] = d[j][],就无需再对它进行验证;若满足sig[i] = sig[j],才需要进一步确定是否有d[i][] = d[j][]。
3)用h[k] (1 <= k <= m,m为以上取模运算的素数)记录满足sig[i] = k的i值。通过令 i = 1 to n,以此更新h[sig[i]]和largest,即可得到结果。
样例输入
7 3
7
6
7
2
1
4
2
样例输出
4
//
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath> using namespace std; const int maxn = 100010;
const int maxk = 31;
int n, k, tmp;
bool cow[maxn][maxk];
int sum[maxn][maxk];
int d[maxn][maxk]; //d 和 sig辅助计算哈希值
int s, size;
const int prime = 49117;
int sig[maxn];
int largest; vector <int> h[prime]; //哈希表 void search(int i, int t)//0 1 \ 2 2 \ 2 3 \ 3 4 \
{
int size = h[i].size();
for (int j = 0; j < size; j++) {
bool flag = 1;
for (int l = 0; l < k; l++) {
//printf("d[h[%d][%d]:%d][%d]:%d ==? d[%d][%d]:%d\n",i,j,h[i][j],l,d[h[i][j]][l],t,l,d[t][l]);
if ( d[ h[i][j] ][l] != d[t][l] ) {
flag = 0;
break;
}
}
if (flag) {
if (t - h[i][j] > largest)
largest = t - h[i][j];
return;
}
}
h[i].push_back(t);
//printf("i:%d push back t:%d\n",i,t);
} int findLargest()
{
largest = 0;
for (int i = 1; i <= n; i++) {
search(sig[i], i);
printf("%d\n",largest);
}
return largest;
} void init()
{
memset(sum, 0, sizeof(sum));
memset(sig, 0, sizeof(sig));
for (int i = 0; i < prime; i++) h[i].clear();
h[0].push_back(0);
for (i = 1; i <= n; i++) {
for (int j = 0; j < k; j++) {
sum[i][j] = sum[i - 1][j] + cow[i][j];
d[i][j] = sum[i][j] - sum[i][0];
sig[i] += d[i][j];
//printf("%d ",d[i][j]);
//printf("%d ",d[i][j]);
}
//printf("%d\n",sig[i]);
/*
for (j = 0; j < k; j++) {
sig[i] += d[i][j];
}
*/
sig[i] = abs(sig[i]) % prime;
}
} int main()
{
//while (1) {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++ ) {
scanf("%d", &tmp);
for (int j = 0; j < k; j++) {
cow[i][j] = tmp % 2;
tmp /= 2;
}
}
init();
findLargest();
printf("%d\n", largest);
//}
return 0;
}
POJ3274-牛的属性-HASH-ACM的更多相关文章
- 牛客网暑期ACM多校训练营(第四场):A Ternary String(欧拉降幂)
链接:牛客网暑期ACM多校训练营(第四场):A Ternary String 题意:给出一段数列 s,只包含 0.1.2 三种数.每秒在每个 2 后面会插入一个 1 ,每个 1 后面会插入一个 0,之 ...
- 牛客网暑期ACM多校训练营(第五场):F - take
链接:牛客网暑期ACM多校训练营(第五场):F - take 题意: Kanade有n个盒子,第i个盒子有p [i]概率有一个d [i]大小的钻石. 起初,Kanade有一颗0号钻石.她将从第1到第n ...
- 牛客网 暑期ACM多校训练营(第二场)A.run-动态规划 or 递推?
牛客网暑期ACM多校训练营(第二场) 水博客. A.run 题意就是一个人一秒可以走1步或者跑K步,不能连续跑2秒,他从0开始移动,移动到[L,R]的某一点就可以结束.问一共有多少种移动的方式. 个人 ...
- 牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学
牛客网暑期ACM多校训练营(第一场) A.Monotonic Matrix 这个题就是给你一个n*m的矩阵,往里面填{0,1,2}这三种数,要求是Ai,j⩽Ai+1,j,Ai,j⩽Ai,j+1 ,问你 ...
- 牛客网暑期ACM多校训练营(第三场)H Diff-prime Pairs (贡献)
牛客网暑期ACM多校训练营(第三场)H Diff-prime Pairs (贡献) 链接:https://ac.nowcoder.com/acm/contest/141/H来源:牛客网 Eddy ha ...
- 2018牛客网暑期ACM多校训练营(第二场)I- car ( 思维)
2018牛客网暑期ACM多校训练营(第二场)I- car 链接:https://ac.nowcoder.com/acm/contest/140/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 ...
- 牛客网暑期ACM多校训练营(第七场)Bit Compression
链接:https://www.nowcoder.com/acm/contest/145/C 来源:牛客网 题目描述 A binary string s of length N = 2n is give ...
- 2018牛客网暑假ACM多校训练赛(第五场)H subseq 树状数组
原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round5-H.html 题目传送门 - https://www.no ...
- 2018牛客网暑假ACM多校训练赛(第四场)E Skyline 线段树 扫描线
原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round4-E.html 题目传送门 - https://www.no ...
- poj3274 Gold Balanced Lineup(HASH)
Description Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been abl ...
随机推荐
- openstack grizzly版network网络节点安装
版本以及源的配置和控制节点一致 1.安装完操作系统已经apt源配置完成之后,一定要执行 apt-get update root@cloud:~# mv /etc/apt/sources.list /e ...
- Rejected request from RFC1918 IP to public server address
Rejected request from RFC1918 IP to public server address
- 去除 Visual Studio 中臃肿的 ipch 和 sdf 文件
使用VS2010建立C++解决方案时,会生成SolutionName.sdf和一个叫做ipch的文件夹,这两个文件再加上*.pch等文件使得工程变得非常的庞大,一个简单的程序都会占用几十M的硬盘容量, ...
- 错误137(net::ERR_NAME_RESOLUTION_FAILED):未知错误的解决办法
现象:之前遇到一些新闻网站打不开的情况...而让异地的朋友打开却能打开.. 解决①:配置dns ,因为公司内部的网络是桥接的 我们dns服务器默认是192.168.1.1 ,dns被封锁,直接导致一些 ...
- spring security +spring boot 自定义 403 页面
用的spring security 做的权限控制, 当 访问没有权限, 跳转 会跳到默认403 页面.不符合当前项目需求. 一下是解决方式: package com.ycmedia; import ...
- ORACLE EXP命令
本文对Oracle数据的导入导出 imp ,exp 两个命令进行了介绍, 并对其对应的參数进行了说明,然后通过一些演示样例进行演练,加深理解.文章最后对运用这两个命令可能出现的问题(如权限不够,不同o ...
- jQuery EasyUI中常常遇到的问题(FAQ)
1.easyui弹出页面中无法引入其它外部js文件的问题 easyui弹出的对话框假设为jsp.html页面,easyui仅仅会将这些页面中的<body></body>内部的内 ...
- CSU1306:Manor(优先队列)
Description Bob有n个正整数,他将这n个整数根据大小划分成两部分.对于小于等于k的整数放在集合A中,其余的放在集合B中.每次他从集合B中取出一个最大的值,将其变成0放入A集合中.然后将A ...
- htmlentities() 函数
Definition and Usage定义和用法 The htmlentities() function converts characters to HTML entities.htmlentit ...
- Linux网络基础
为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/SJQ. http://www.cnblogs.com/shijiaqi1066/p/3840284.html ...