Linear Regression with One Variable

Model Representation

Recall that in *regression problems*, we are taking input variables and trying to map the output onto a *continuous* expected result function.

Linear regression with one variable is also known as "univariate linear regression."

Univariate linear regression is used when you want to predict a single output value from a single input value. We're doing supervised learning here, so that means we already have an idea what the input/output cause and effect should be.

The Hypothesis Function

Our hypothesis function has the general form:

hθ(x)=θ01x

We give to hθ values for θ0 and θ1 to get our output 'y'. In other words, we are trying to create a function called hθ that is able to reliably map our input data (the x's) to our output data (the y's).

Example:

x (input) y (output)
0 4
1 7
2 7
3 8

Now we can make a random guess about our hθ function: θ0=2 and θ1=2. The hypothesis function becomes hθ(x)=2+2x.

So for input of 1 to our hypothesis, y will be 4. This is off by 3.

Cost Function

We can measure the accuracy of our hypothesis function by using a cost function. This takes an average (actually a fancier version of an average) of all the results of the hypothesis with inputs from x's compared to the actual output y's.

J(θ01)=(1/2m)∑i=1m(hθ(x(i))−y(i))2

To break it apart, it is 12x¯ where x¯ is the mean of the squares of hθ(x(i))−y(i), or the difference between the predicted value and the actual value.

This function is otherwise called the "Squared error function", or Mean squared error. The mean is halved (12m) as a convenience for the computation of the gradient descent, as the derivative term of the square function will cancel out the 12 term.

Now we are able to concretely measure the accuracy of our predictor function against the correct results we have so that we can predict new results we don't have.

Gradient Descent

So we have our hypothesis function and we have a way of measuring how accurate it is. Now what we need is a way to automatically improve our hypothesis function. That's where gradient descent comes in.

Imagine that we graph our hypothesis function based on its fields θ0 and θ1 (actually we are graphing the cost function for the combinations of parameters). This can be kind of confusing; we are moving up to a higher level of abstraction. We are not graphing x and y itself, but the guesses of our hypothesis function.

We put θ0 on the x axis and θ1 on the z axis, with the cost function on the vertical y axis. The points on our graph will be the result of the cost function using our hypothesis with those specific theta parameters.

We will know that we have succeeded when our cost function is at the very bottom of the pits in our graph, i.e. when its value is the minimum.

The way we do this is by taking the derivative (the line tangent to a function) of our cost function. The slope of the tangent is the derivative at that point and it will give us a direction to move towards. We make steps down that derivative by the parameter α, called the learning rate.

The gradient descent equation is:

repeat until convergence:

θj:=θj−α∂∂θjJ(θ0,θ1)

for j=0 and j=1

Intuitively, this could be thought of as:

repeat until convergence:

θj:=θj−α[Slope of tangent aka derivative]

Gradient Descent for Linear Regression

When specifically applied to the case of linear regression, a new form of the gradient descent equation can be derived. We can substitute our actual cost function and our actual hypothesis function and modify the equation to (the derivation of the formulas are out of the scope of this course, but a really great one can be found here:

repeat until convergence: {θ0:=θ1:=}θ0−α1m∑i=1m(hθ(x(i))−y(i))θ1−α1m∑i=1m((hθ(x(i))−y(i))x(i))

where m is the size of the training set, θ0 a constant that will be changing simultaneously with θ1 and x(i),y(i)are values of the given training set (data).

Note that we have separated out the two cases for θj and that for θ1 we are multiplying x(i) at the end due to the derivative.

The point of all this is that if we start with a guess for our hypothesis and then repeatedly

apply these gradient descent equations, our hypothesis will become more and more accurate.

What's Next

Instead of using linear regression on just one input variable, we'll generalize and expand our concepts so that we can predict data with multiple input variables. Also, we'll solve for θ0 and θ1 exactly without needing an iterative function like gradient descent.

机器学习笔记1——Linear Regression with One Variable的更多相关文章

  1. Stanford机器学习---第一讲. Linear Regression with one variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  2. Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)

    一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...

  3. 机器学习笔记-1 Linear Regression(week 1)

    1.Linear Regression with One variable Linear Regression is supervised learning algorithm, Because th ...

  4. 机器学习笔记-1 Linear Regression with Multiple Variables(week 2)

    1. Multiple Features note:X0 is equal to 1 2. Feature Scaling Idea: make sure features are on a simi ...

  5. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  6. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归

    Lecture2   Linear regression with one variable  单变量线性回归 2.1 模型表示 Model Representation 2.1.1  线性回归 Li ...

  8. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  9. MachineLearning ---- lesson 2 Linear Regression with One Variable

    Linear Regression with One Variable model Representation 以上篇博文中的房价预测为例,从图中依次来看,m表示训练集的大小,此处即房价样本数量:x ...

随机推荐

  1. 【原创】QT编程 多线程

    请先保证已安装QT,没有请参考 http://www.cnblogs.com/kavs/p/4608926.html  安装QT. 新建threads文件夹存放项目:mkdir threads sud ...

  2. linux 下串口的配置

    串口最基本的设置包括波特率 校验位 和停止位. 主要是设置个结构体的成员值, #include <termios.h> struct termio { unsigned short c_i ...

  3. 使用WebBrowser的记录

    第一:新建一个类,用了获取WebBrowser元素的类 //需要引用 Interop.SHDocVw 和 Microsoft.mshtmlpublic class Element { //根据Name ...

  4. HTML标签总结

    HTML 基本文档 <!DOCTYPE html> <html> <head> <title>文档标题</title> </head& ...

  5. AppStore IPv6-only审核被拒原因分析及解决方案-b

    自2016年6月1日起,苹果要求所有提交App Store的iOS应用必须支持IPv6-only环境,背景也是众所周知的,IPv4地址已基本分配完毕,同时IPv6比IPv4也更加高效,向IPv6过渡是 ...

  6. 从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel

    一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数 ...

  7. PS制作独特火焰立体文字

    效果图中的文字部分并不复杂,为简单的立体字,用图层样式及手工复制就可以做好.火焰部分稍微有点复杂,用动感及火焰素材叠加,然后再加上火花及炫光等渲染出动感效果即可.最终效果 素材下载:本教程中需要用到的 ...

  8. LightOj_1364 Expected Cards

    题目链接 题意: 一副牌, 每个花色13张牌,加上大小王,共54张. 遇到大小王可以代替其中某种花色. 给定C, D, H, S. 每次抽一张牌, 问抽到C张梅花, D张方块, H张红桃, S张黑桃所 ...

  9. SQL 维护用得到的监控语句

    使用DMV来分析SQL Server启动以来累计使用CPU资源最多的语句.例如下面的语句就可以列出前50名 s2.dbid, ( , ( ( ) )) AS sql_statement, execut ...

  10. 听同事讲 Bayesian statistics: Part 2 - Bayesian inference

    听同事讲 Bayesian statistics: Part 2 - Bayesian inference 摘要:每天坐地铁上班是一件很辛苦的事,需要早起不说,如果早上开会又赶上地铁晚点,更是让人火烧 ...