Description

现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,000。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8

HINT

 

Source

这题要猜一个结论——长为i的边个数是一定的以及前i小的边他们构成的并查集是一定的,这样就可以 2^n dfs了(相同长度的边<=10)。

 #include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std; #define maxn (110)
#define maxm (1010)
#define rhl (31011) int father[maxn],save[maxn],bac[maxm],road[maxm];
int n,m,tot,ans,sum;
struct E{ int u,v,w; }edge[maxm]; inline void init() {for (int i = ;i <= n;++i) father[i] = i;} inline int find(int a) {if (father[a] != a) father[a] = find(father[a]); return father[a];} inline bool cmp(E a,E b){ return a.w < b.w; } inline void mst()
{
sort(edge+,edge+m+,cmp); init();
int have = ,r1,r2,pos;
for (int i = ;i <= m;++i)
{
r1 = find(edge[i].u),r2 = find(edge[i].v);
if (r1 != r2)
{
father[r1] = r2; ++have;
pos = lower_bound(bac+,bac+tot+,edge[i].w)-bac;
++road[pos];
}
if (have == n - ) break;
}
if (have < n - ) printf(""),exit();
} inline void dfs(int a,int r,int pos,int cho)
{
if (road[pos] == cho)
{
++sum;
if (sum == ) memcpy(save,father,sizeof(save));
return;
}
if (a > r) return;
if (cho+r-a+<road[pos]) return;
int temp[maxn];
dfs(a+,r,pos,cho);
memcpy(temp,father,sizeof(temp));
int r1 = find(edge[a].u),r2 = find(edge[a].v);
if (r1 != r2) father[r1] = r2,dfs(a+,r,pos,cho+);
memcpy(father,temp,sizeof(temp));
} int main()
{
freopen("1016.in","r",stdin);
freopen("1016.out","w",stdout);
scanf("%d %d",&n,&m);
for (int i = ;i <= m;++i)
{
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
edge[i] = (E) {a,b,c};
bac[i] = c;
}
sort(bac+,bac+m+);
tot = unique(bac+,bac+m+)-bac-;
mst();
init(); ans = ;
for (int i = ;i <= m;)
{
int j = i;
while (j < m && edge[j+].w == edge[i].w) ++j;
sum = ;
dfs(i,j,lower_bound(bac+,bac+tot,edge[i].w)-bac,);
(ans *= sum)%=rhl;
memcpy(father,save,sizeof(save));
i = j+;
}
printf("%d",ans);
fclose(stdin); fclose(stdout);
return ;
}

BZOJ 1016 最小生成树计数的更多相关文章

  1. BZOJ 1016 最小生成树计数 【模板】最小生成树计数

    [题解] 对于不同的最小生成树,每种权值的边使用的数量是一定的,每种权值的边的作用是确定的 我们可以先做一遍Kruskal,求出每种权值的边的使用数量num 再对于每种权值的边,2^num搜索出合法使 ...

  2. BZOJ 1016 最小生成树计数(矩阵树定理)

    我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很 ...

  3. BZOJ 1016--[JSOI2008]最小生成树计数(kruskal&搜索)

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7429  Solved: 3098[Submit][St ...

  4. BZOJ 1016 生成树计数

    现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树 ...

  5. 【BZOJ】【1016】【JSOI2008】最小生成树计数

    Kruskal/并查集+枚举 唉我还是too naive,orz Hzwer 一开始我是想:最小生成树删掉一条边,再加上一条边仍是最小生成树,那么这两条边权值必须相等,但我也可以去掉两条权值为1和3的 ...

  6. [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】

    题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...

  7. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  8. 最小生成树的边的概念问题!!! 最小生成树的计数 bzoj 1016

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5292  Solved: 2163[Submit][St ...

  9. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

随机推荐

  1. [PWA] Keynote: Progressive Web Apps across all frameworks

    PWA: Add to home screen Angular Universal Server side rendering: for achieving better proference on ...

  2. 关于TXT转CHM的完整解决方式

    为什么要转CHM? 有些书,TXT的资源非常好找,而CHM的资源非常难找(先不论PDF格式的,只是话说PDF格式的没有一个书签文件夹看起来也非常难受) 而CHM格式在左側有一个文件夹结构,我最喜欢这个 ...

  3. C程序中唯一序列号的生成

    在实际的软件开发项目中.常常会涉及唯一序列号的生成.本文以一个实际的程序为例,介绍了唯一序列号的生成过程. 本文生成的序列号的样式为:MMDDHHMINSS_XXXXXX. 程序例如以下: /**** ...

  4. android 50 进程优先级

    程序在磁盘叫程序,程序加载到内存运行起来叫进程,优先级5个级别,内存不足的时候会杀掉低级别进程. Active Process:最上面用户可以操作的. Visible Process:可见进程,部分可 ...

  5. Java基础知识强化之集合框架笔记40:Set集合之HashSet存储自定义对象并遍历

    1. HashSet存储自定义对象并遍历 2. 代码示例: (1)Student类,如下: package cn.itcast_02; /** * @author Administrator * */ ...

  6. C#压缩文件为zip格式

    Vercher   C#压缩文件为zip格式 需要ICSharpCode.SharpZipLib.dll,网上下载的到. 代码是从网上找来的: 1 public class ZipClass 2 { ...

  7. HttpContext.Current

    HttpContext. Response 直接这样写会报错 是因为 httpcontext没有提供response 这个静态的方法. 通过这样写就可以 ASP.NET还为它提供了一个静态属性Http ...

  8. MEF依赖注入调试小技巧!

    自从哥的项目使用MEF以来,天天那个纠结啊,甭提了.稍有错误,MEF就报错,但就不告诉你哪错了,大爷的. 后来看了MEFX的相关调试方法,感觉也不太理想,根本不够直观的看到错误原因,也许是没有深入学习 ...

  9. 让ie6/7/8兼容css3的圆角阴影等特殊效果的方法 PIE1.0.0及placeholder在这些IE下生效的方法

    PIE地址:http://css3pie.com/ 使用方法1: #login,#AnnouncementBox {  border:3px solid #fff;  -webkit-border-r ...

  10. iOS 获取通讯录里边的电话号码AddressBook

    1  首先导入库 <AddressBook/AddressBook.h> 2 然后在导入#import <AddressBook/AddressBook.h>文件 3 声明   ...