UVA 12544 - Beehives O(nm) 无向图最小环
Bees are one of the most industrious insects. Since they collect nectarand pollen from flowers, they
have to rely on the trees in the forest. For simplicity they numbered the n trees from 0 to n − 1. Instead
of roaming around all over the forest, they use a particular list of paths. A path is based on two trees,
and they can move either way i.e. from one tree to another in straight line. They don’t use paths that
are not in their list.
As technology has been improved a lot, they also changed their working strategy. Instead of hovering
over all the trees in the forest, they are targeting particular trees, mainly trees with lots of flowers.
So, they planned that they will build some new hives in some targeted trees. After that they will only
collect their foods from these trees. They will also remove some paths from their list so that they don’t
have to go to a tree with no hive in it.
Now, they want to build the hives such that if one of the paths in their new list go down (some
birds or animals disturbs them in that path) it’s still possible to go from any hive to another using the
existing paths.
They don’t want to choose less than two trees and as hive-building requires a lot of work, they need
to keep the number of hives as low as possible. Now you are given the trees with the paths they use,
your task is to propose a new bee hive colony for them.
Input
Input starts with an integer T (T ≤ 50), denoting the number of test cases.
Each case starts with a blank line. Next line contains two integers n (2 ≤ n ≤ 500) and m
(0 ≤ m ≤ 20000), where n denotes the number of trees and m denotes the number of paths. Each of
the next m lines contains two integers u v (0 ≤ u, v < n, u ̸= v) meaning that there is a path between
tree u and v. Assume that there can be at most one path between tree u to v, and needless to say that
a path will not be given more than once in the input.
Output
For each case, print the case number and the number of beehives in the proposed colony or ‘impossible’
if its impossible to find such a colony.
NOTE: Dataset is huge. Use faster I/O methods.
Sample Input
3
3
0
1
2
3
1
2
0
2 1
0 1
5
0
1
1
2
0
3
6
1
2
3
3
4
4
Sample Output
Case 1: 3
Case 2: impossible
Case 3: 3
#include <cstdio>
#include <cstring>
#include <cstring>
#include <queue>
#include <algorithm>
#include <vector>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = ;
const int M = ; vector<int> g[N];
int vis[N], dis[N], pre[N];
queue<int> que; int ans;
void bfs(int st) {
while(!que.empty()) que.pop();
memset(vis, , sizeof vis);
memset(dis, INF, sizeof dis);
memset(pre, -, sizeof pre);
dis[st] = ;
vis[st] = ;
que.push(st); while(!que.empty()) {
int u = que.front(); que.pop();
int sx = g[u].size();
for(int i = ; i < sx; ++i) {
int v = g[u][i];
if(v == pre[u]) continue;
if(!vis[v]) {
vis[v] = ;
dis[v] = dis[u] + ;
que.push(v);
pre[v] = u;
}else {
ans = min(ans, dis[u] + dis[v] + );
}
}
}
}
int main() {
//freopen("in", "r", stdin);
int _, cas = ; scanf("%d", &_);
while(_ --) {
int n, m; scanf("%d%d", &n, &m);
int u, v;
for(int i = ; i <= n; ++i) g[i].clear();
for(int i = ; i < m; ++i) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
ans = INF;
for(int i = ; i < n; ++i) {
bfs(i);
}
printf("Case %d: ", cas++);
if(ans == INF) puts("impossible");
else printf("%d\n", ans);
}
return ;
}
题意:给出一个无向图,n<=500&&m<=20000, 求一个最小环
思路:枚举起点s,bfs出从s到每个点的距离dis, 对于当前边u,v,如果v被访问过了,且上次v被访问不是通过u,即v != pre[u],那么res = dis[u] + dis[v] + 1
但是注意,枚举的点不一定在环里面,且真正形成的环的长度也是小于等于res的,比如4个点,4条边, 0-1,1-2,1-3,2-3,当从0点bfs时,得到的备选res=5,但环的长度是3,
因为我们是枚举每一个点,最终一定能得到最小环
UVA 12544 - Beehives O(nm) 无向图最小环的更多相关文章
- POJ 1734 无向图最小环/有向图最小环
给定一张图,求图中一个至少包含三个点的环,环上的点不重复,并且环上的边的长度之和最小. 点数不超过100个 输出方案 无向图: /*Huyyt*/ #include<bits/stdc++.h& ...
- uva 12544 无向图最小环
思路:这题的N有500,直接floyd肯定超时. 我的做法是每次枚举一个点,求出包含这个点的最小环. 对所有最小环取最小值.求包含某个点的最小环我用的是启发式搜索,先以该点求一次spfa,然后dfs解 ...
- FZU 2090 旅行社的烦恼 floyd 求无向图最小环
题目链接:旅行社的烦恼 题意是求无向图的最小环,如果有的话,输出个数,并且输出权值. 刚刚补了一发floyd 动态规划原理,用了滑动数组的思想.所以,这个题就是floyd思想的变形.在k从1到n的过程 ...
- 【POJ1734】Sightseeing Trip 无向图最小环
题目大意:给定一个 N 个顶点的无向图,边有边权,如果存在,求出该无向图的最小环,即:边权和最小的环,并输出路径. 题解:由于无向图,且节点数较少,考虑 Floyd 算法,在最外层刚开始遍历到第 K ...
- 图论:Floyd-多源最短路、无向图最小环
在最短路问题中,如果我们面对的是稠密图(十分稠密的那种,比如说全连接图),计算多源最短路的时候,Floyd算法才能充分发挥它的优势,彻彻底底打败SPFA和Dijkstra 在别的最短路问题中都不推荐使 ...
- 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd
题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...
- POJ 1734 Sightseeing trip(无向图最小环+输出路径)
题目链接 #include <cstdio> #include <string> #include <cstring> #include <queue> ...
- uva 796 Critical Links(无向图求桥)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- USACO4.13Fence Loops(无向图最小环)
最近脑子有点乱 老是不想清楚就啪啪的敲 敲完之后一看 咦..样例都过不去 仔细一想 这样不对啊 刚开始就写了一SPFA 最后发现边跟点的关系没处理好 删了..写dfs..还是没转化好 开始搜解题方法 ...
随机推荐
- javascript判断手机浏览器版本信息
<script type="text/javascript"> /* * 智能机浏览器版本信息: * */ var browser={ versions:functio ...
- ARM处理器解析
按图分析: ARM处理器有七种工作模式,为的是形成不同的使用级别,以防造成对系统的破坏.不同模式可以访问的寄存器不同,可以运行的指令不同. (1)user(10000):普通应用程序运行的模式(应用程 ...
- html传参数
var request = { QueryString: function (paramName) { var url = window.location.search; paramValue = & ...
- Python之路【第一篇】:Python简介和入门
python简介: 一.什么是python Python(英国发音:/ pa θ n/ 美国发音:/ pa θɑ n/),是一种面向对象.直译式的计算机程序语言. 每一门语言都有自己的哲学: pyth ...
- 全文搜索 Lucene.Net
Lucene简介 首先说明的是--Lucene.Net只是一个全文检索开发包,不是一个成型的搜索引擎, 它的功能就是负责将文本数据按照某种分词算法进行切词,分词后的结果存储在索引库中,从索引库检索数据 ...
- [NHibernate]延迟加载
目录 写在前面 文档与系列文章 延迟加载 一个例子 总结 写在前面 上篇文章介绍了多对多关系的关联查询的sql,HQL,Criteria查询的三种方式.本篇文章将介绍nhibernate中的延迟加载方 ...
- 用C语言,如何判断主机是 大端还是小端(字节序)
所谓大端就是指高位值在内存中放低位地址,所谓小端是指低位值在内存中放低位地址.比如 0x12345678 在大端机上是 12345678,在小端机上是 78564312,而一个主机是大端还是小端要看C ...
- Scrum Meeting ——总结
冲刺总结 0*.燃尽图 迟来的燃尽图,别看它是最后一天掉了一堆,感觉很假,像是人为的把issues都关闭掉.其实不然,很多功能是大家平时做好,但是没整合在一起,所以没燃掉,在最后几天的整合中,通过测试 ...
- php-css外边距
css 基本语法 selector{declaration1;declaration2;....delecrationN;} (选择器和一条或多条声明) 选择器为需要改变样式的html元素,每条声 ...
- C#高级编程笔记 Day 6, 2016年9月 14日 (泛型)
1.泛型类的功能:在创建泛型类时,还需要一些其他C#关键字.例如,不能把null赋予泛型类型.此时,可以使用default 关键字.如果泛型类型不需要Object类的功能,但需要调用泛型类上的某特定方 ...