poj 1845 Sumdiv (等比求和+逆元)
题目链接:http://poj.org/problem?id=1845
题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000)
解题思路:我们先利用唯一分解定理,将a分解成(p1^q1)*(p2^q2)……(pk^qk)的形式,则a^b=((p1^q1)*(p2^q2)……(pk^qk))^b=(p1^q1b)*(p2^q2b)……(pk^qkb)
a^b的因子和就会等于(1+p1+p1^2+……p1^q1b)*(1+p2+p2^2+……p2^q2b)*……(1+pk+pk^2+……pk^qkb)
然后我们可以用等差求和公式转化为((p1^(q1b+1)-1)/(p1-1))*((p2^(q2b+1)-1)/(p2-1))……((pk^(qkb+1)-1)/(pk-1))
对于求逆元:
(a/b)%mod=(a%(mod*b))/b%mod。对B*mod取余,剩余的值必定是B的倍数,这种方法是用于mod和B小的时候,用在这题就刚好了。
#include<iostream>
using namespace std;
typedef long long ll;
const int MAXN=;
const int mod=;
ll a,b,prime[MAXN],tot;
void getPrime(int N){ //筛素数
for(int i=;i<=N;i++) prime[i]=;
for(int i=;i<=N;i++){
if(prime[i])
prime[tot++]=i;
for(int j=;j<tot&&prime[j]*i<=N;j++){
prime[i*prime[j]]=;
if(i%prime[j]==)break;
}
}
}
ll qmul(ll a,ll b,ll m){
ll res=;
while(b){
if(b&) res=(res+a)%m;
b>>=;
a=(a+a)%m;
}
return res;
}
ll qpow(ll a,ll b,ll m){
ll res=;
while(b){
if(b&) res=qmul(res,a,m); //直接相乘会爆,可以一个一个加
a=qmul(a,a,m);
b>>=;
}
return res;
}
ll solve(ll x,ll y){
ll ans=;
for(int i=;prime[i]*prime[i]<=x;i++){
if(x%prime[i]==){
int cnt=;
while(x%prime[i]==){
cnt++;
x/=prime[i];
}
ll M=(prime[i]-)*mod;
ans=ans*(qpow(prime[i],cnt*y+,M)-+M)%M/(prime[i]-)%mod;
}
}
if(x>){
ll M=(x-)*mod;
ans=ans*(qpow(x,y+,M)-+M)%M/(x-)%mod;
}
return ans;
}
int main(){
cin>>a>>b;
getPrime();
cout<<solve(a,b)<<endl;
return ;
}
poj 1845 Sumdiv (等比求和+逆元)的更多相关文章
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
- POJ 1845 Sumdiv 【二分 || 逆元】
任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...
- POJ 1845 Sumdiv(逆元)
题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点 1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...
- POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...
- POJ 1845 Sumdiv 【逆元】
题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...
- POJ 1845 Sumdiv(因子分解+快速幂+二分求和)
题意:给你A,B,让求A^B所有的因子和模上9901 思路:A可以拆成素因子的乘积: A = p1^x1 * p2^x2 *...* pn^xn 那么A^B = p1^(B*x1) * p2^(B*x ...
- POJ 1845 Sumdiv (整数拆分+等比快速求和)
当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2 ...
- POJ 1845 Sumdiv(求因数和 + 逆元)题解
题意:给你a,b,要求给出a^b的因子和取模9901的结果. 思路:求因子和的方法:任意A = p1^a1 * p2^a2 ....pn^an,则因子和为sum =(1 + p1 + p1^2 + . ...
- poj 1845 Sumdiv(约数和,乘法逆元)
题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...
随机推荐
- django 多条数据显示的坑(怪自己)
今天的问题是,一个接口执行了很多次,每次都会在结果表里面记录一条结果信息,在查看接口详情页面,我想只展示一条,然后就进入误区了 第一个是怪自己手残,api_id 被自己写成app_id了 第二个是筛 ...
- Python配置模块:configparser参数含义
https://blog.csdn.net/CoderPai/article/details/80420698
- leetcode_1293. Shortest Path in a Grid with Obstacles Elimination_[dp动态规划]
题目链接 Given a m * n grid, where each cell is either 0 (empty) or 1 (obstacle). In one step, you can m ...
- Centos7卸载FastDFS6.1卸载(六)
今天由于安装了高版本的fastdfs,与nginx不兼容,因此要卸载掉,重新安装. 转载:http://www.leftso.com/blog/244.html ) 停止服务 [root@bogon ...
- 【CF1257F】Make Them Similar【meet in the middle+hash】
题意:给定n个数,让你给出一个数,使得n个数与给出的数异或后得到的数的二进制表示中1的数量相同 题解:考虑暴搜2^30去找答案,显然不可接受 显然可以发现,这是一个经典的meet in the mid ...
- 学习日记12、list集合中根据某个字段进行去重复操作
List<T_CusBankCardInfoModel> blist = B_BLL.GetListByCusId(CusIds).Distinct(new ModelComparer() ...
- CodeChef FNCS (分块+树状数组)
题目:https://www.codechef.com/problems/FNCS 题解: 我们知道要求区间和的时候,我们用前缀和去优化.这里也是一样,我们要求第 l 个函数到第 r 个函数 [l, ...
- HDU 5634 Rikka with Phi
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5634 ------------------------------------------------ ...
- 判断逻辑 先判断协议字段返回,再判断业务返回,最后判断交易状态 API密钥
[微信支付]微信小程序支付开发者文档 https://pay.weixin.qq.com/wiki/doc/api/wxa/wxa_api.php?chapter=4_1 协议规则 商户接入微信支付, ...
- tomcat 迁移到weblogic 问题
问题1: Caused by: java.lang.UnsupportedClassVersionError: com/audaque/datadiscovery/soap/service/impl/ ...