问题描述

You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

V A S E S
1 2 3 4 5
Bunches 1 (azaleas) 7 23 -5 -24 16
2 (begonias) 5 21 -4 10 23
3 (carnations) -21 5 -4 -20 20

According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

输入格式

  • The first line contains two numbers: F, V.

  • The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.

  • 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.

  • F <= V <= 100 where V is the number of vases.

  • -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

输出格式

The first line will contain the sum of aesthetic values for your arrangement.

样例输入

3 5

7 23 -5 -24 16

5 21 -4 10 23

-21 5 -4 -20 20

样例输出

53

题目大意

给你一些花和一些花瓶,其中花要放在花瓶里,花和花瓶的摆放必须按照编号顺序,即序号小的不能放在序号大的右边。每个花放在不同的花瓶中都有不同的贡献,求最大的贡献总和。

解析

一道比较水的线性动态规划。既然都只能按照顺序来摆放,那么每一个状态都只与它前面的状态有关。设f[i][j]表示前i朵花放在前j个花瓶里的最大贡献。那么我们可以用前面的摆放方式推出f[i][j]。设当前花为i,摆在前j个花瓶中,k为小于j的花瓶编号,那么有状态转移方程如下:

\[f[i][j]=max(f[i][j],f[i-1][k]+a[i][j])
\]

其中a[i][j]表示第i朵花放在第j个花瓶中的贡献。最后答案即为f[n][m]。

注意,(1)由于可能出现负数,f数组初始化时要设成负无穷大,边界状态还是设为0。(2)每次决定花瓶时要保证最后剩下的花瓶能够摆下剩下的花,前面的花瓶能够摆下前面已经摆过的花。

代码

#include <iostream>
#include <cstdio>
#define N 102
using namespace std;
int n,m,i,j,k,a[N][N],f[N][N];
int main()
{
cin>>n>>m;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++) cin>>a[i][j];
}
for(i=1;i<=n;i++){
for(j=1;j<=m;j++) f[i][j]=-(1<<30);
}
for(i=1;i<=m;i++) f[0][i]=0;
for(i=1;i<=n;i++){
for(j=i;j<=m-(n-i);j++){
for(k=i-1;k<j;k++){
f[i][j]=max(f[i][j],f[i-1][k]+a[i][j]);
}
}
}
cout<<f[n][m]<<endl;
return 0;
}

[CH5E02] A Little Shop of Flowers的更多相关文章

  1. sgu 104 Little shop of flowers 解题报告及测试数据

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB 问题: 你想要将你的 ...

  2. [POJ1157]LITTLE SHOP OF FLOWERS

    [POJ1157]LITTLE SHOP OF FLOWERS 试题描述 You want to arrange the window of your flower shop in a most pl ...

  3. SGU 104. Little shop of flowers (DP)

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  4. POJ-1157 LITTLE SHOP OF FLOWERS(动态规划)

    LITTLE SHOP OF FLOWERS Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19877 Accepted: 91 ...

  5. 快速切题 sgu104. Little shop of flowers DP 难度:0

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  6. poj1157LITTLE SHOP OF FLOWERS

    Description You want to arrange the window of your flower shop in a most pleasant way. You have F bu ...

  7. POJ 1157 LITTLE SHOP OF FLOWERS (超级经典dp,两种解法)

    You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flo ...

  8. Poj-1157-LITTLE SHOP OF FLOWERS

    题意为从每行取一瓶花,每瓶花都有自己的审美价值 第 i+1 行取的花位于第 i 行的右下方 求最大审美价值 dp[i][j]:取到第 i 行,第 j 列时所获得的最大审美价值 动态转移方程:dp[i] ...

  9. 【SGU 104】Little shop of flowers

    题意 每个花按序号顺序放到窗口,不同窗口可有不同观赏值,所有花都要放上去,求最大观赏值和花的位置. 分析 dp,dp[i][j]表示前i朵花最后一朵在j位置的最大总观赏值. dp[i][j]=max( ...

随机推荐

  1. flask_sqlalchemy和sqlalchemy的区别有哪些?

    概要的说: SQLAlchemy是python社区使用最广泛的ORM之一,SQL-Alchmy直译过来就是SQL炼金术. Flask-SQLAlchemy集成了SQLAlchemy,它简化了连接数据库 ...

  2. VMware 虚拟化编程(11) — VMware 虚拟机的全量备份与增量备份方案

    目录 目录 前文列表 全量备份数据的获取方式 增量备份数据的获取过程 前文列表 VMware 虚拟化编程(1) - VMDK/VDDK/VixDiskLib/VADP 概念简析 VMware 虚拟化编 ...

  3. Postman + Newman 生成测试报告

    1.安装Node.js 下载地址: https://nodejs.org/download/ 2.安装Newman 1) 打开cmd,输入:npm install -g newman 2) 安装支持N ...

  4. node+express POST请求

    // POST 登录 app.post('/login', function (req, res) { // 定义了一个post变量,用于暂存请求体的信息 let [post,addSql,addSq ...

  5. assert 与if

    strlen的实现用不用加断言(assert)? http://en.cppreference.com/w/cpp/error/assert 自己写strlen实现会加assert判断空指针,Debu ...

  6. EL表达式.jsp指令等

    1.JSP标准指令:<%@ 标准指令(属性 )%><%@ page %><%@ include %><%@ taglib %> 2.JSP程序代码元素: ...

  7. Hyperledger:Fabric CA 用户指南 [译]

    Fabric CA 用户指南 Fabric CA 是 Hyperledger Fabric 的官方配套认证设施. 原文链接:http://hyperledger-fabric.readthedocs. ...

  8. VS2012发布Web应用程序

    一.右键项目-->发布 二.配置文件:新建-->配置文件名称,如MyProject 三.连接:1.发布方法:文件系统  2.目标位置:自己在本地建立一个文件夹 3.目标URL:可以不填 四 ...

  9. Spring Boot系列(四) Spring Boot 之验证

    这节没有高深的东西, 但有一些学习思路值得借鉴. JSR 303 (Bean Validation) Maven依赖 <dependency> <groupId>org.spr ...

  10. 今天起,重新开头学习Java - 一、安装环境

    先拜领路人 https://blog.csdn.net/u011541946/article/category/6951961/3? 一.安装JDK 1. 下载 www.java.com JDK是Ja ...