问题描述

You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

V A S E S
1 2 3 4 5
Bunches 1 (azaleas) 7 23 -5 -24 16
2 (begonias) 5 21 -4 10 23
3 (carnations) -21 5 -4 -20 20

According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

输入格式

  • The first line contains two numbers: F, V.

  • The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.

  • 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.

  • F <= V <= 100 where V is the number of vases.

  • -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

输出格式

The first line will contain the sum of aesthetic values for your arrangement.

样例输入

3 5

7 23 -5 -24 16

5 21 -4 10 23

-21 5 -4 -20 20

样例输出

53

题目大意

给你一些花和一些花瓶,其中花要放在花瓶里,花和花瓶的摆放必须按照编号顺序,即序号小的不能放在序号大的右边。每个花放在不同的花瓶中都有不同的贡献,求最大的贡献总和。

解析

一道比较水的线性动态规划。既然都只能按照顺序来摆放,那么每一个状态都只与它前面的状态有关。设f[i][j]表示前i朵花放在前j个花瓶里的最大贡献。那么我们可以用前面的摆放方式推出f[i][j]。设当前花为i,摆在前j个花瓶中,k为小于j的花瓶编号,那么有状态转移方程如下:

\[f[i][j]=max(f[i][j],f[i-1][k]+a[i][j])
\]

其中a[i][j]表示第i朵花放在第j个花瓶中的贡献。最后答案即为f[n][m]。

注意,(1)由于可能出现负数,f数组初始化时要设成负无穷大,边界状态还是设为0。(2)每次决定花瓶时要保证最后剩下的花瓶能够摆下剩下的花,前面的花瓶能够摆下前面已经摆过的花。

代码

#include <iostream>
#include <cstdio>
#define N 102
using namespace std;
int n,m,i,j,k,a[N][N],f[N][N];
int main()
{
cin>>n>>m;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++) cin>>a[i][j];
}
for(i=1;i<=n;i++){
for(j=1;j<=m;j++) f[i][j]=-(1<<30);
}
for(i=1;i<=m;i++) f[0][i]=0;
for(i=1;i<=n;i++){
for(j=i;j<=m-(n-i);j++){
for(k=i-1;k<j;k++){
f[i][j]=max(f[i][j],f[i-1][k]+a[i][j]);
}
}
}
cout<<f[n][m]<<endl;
return 0;
}

[CH5E02] A Little Shop of Flowers的更多相关文章

  1. sgu 104 Little shop of flowers 解题报告及测试数据

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB 问题: 你想要将你的 ...

  2. [POJ1157]LITTLE SHOP OF FLOWERS

    [POJ1157]LITTLE SHOP OF FLOWERS 试题描述 You want to arrange the window of your flower shop in a most pl ...

  3. SGU 104. Little shop of flowers (DP)

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  4. POJ-1157 LITTLE SHOP OF FLOWERS(动态规划)

    LITTLE SHOP OF FLOWERS Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19877 Accepted: 91 ...

  5. 快速切题 sgu104. Little shop of flowers DP 难度:0

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  6. poj1157LITTLE SHOP OF FLOWERS

    Description You want to arrange the window of your flower shop in a most pleasant way. You have F bu ...

  7. POJ 1157 LITTLE SHOP OF FLOWERS (超级经典dp,两种解法)

    You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flo ...

  8. Poj-1157-LITTLE SHOP OF FLOWERS

    题意为从每行取一瓶花,每瓶花都有自己的审美价值 第 i+1 行取的花位于第 i 行的右下方 求最大审美价值 dp[i][j]:取到第 i 行,第 j 列时所获得的最大审美价值 动态转移方程:dp[i] ...

  9. 【SGU 104】Little shop of flowers

    题意 每个花按序号顺序放到窗口,不同窗口可有不同观赏值,所有花都要放上去,求最大观赏值和花的位置. 分析 dp,dp[i][j]表示前i朵花最后一朵在j位置的最大总观赏值. dp[i][j]=max( ...

随机推荐

  1. leetcode 695 Max Area of Island 岛的最大面积

    这个题使用深度优先搜索就可以直接遍历 DFS递归方法: class Solution { public: vector<vector<,},{,-},{,},{,}}; int maxAr ...

  2. 【C++进阶:移位运算符的用法】

    数据在计算机中以补码存储 移位运算符:<<  左移运算符 >>  右移运算符 一丶 << 左移运算符 移位规则:左边抛弃,右边补零 int num=10; num& ...

  3. 阶段1 语言基础+高级_1-3-Java语言高级_04-集合_06 Set集合_1_HashSet集合介绍

    特点:不允许有重复的记录,无序的集合 set不允许重复.接口中没有索引.所以方法和Collection中的方法是一样的,没有带索引的方法 因为Set的方法和Collection都是一样的.所以这里不再 ...

  4. Monte Carlo Policy Evaluation

    Model-Based and Model-Free In the previous several posts, we mainly talked about Model-Based Reinfor ...

  5. 如何将.Net Core应用程序部署在Linux操作系统上运行

    .Net Core简介 跨平台: 可以在 Windows.macOS 和 Linux 操作系统上运行. 跨体系结构保持一致: 在多个体系结构(包括 x64.x86 和 ARM)上以相同的行为运行代码. ...

  6. Sentinel之熔断降级

    除了流量控制以外,对调用链路中不稳定的资源进行熔断降级也是保障高可用的重要措施之一.由于调用关系的复杂性,如果调用链路中的某个资源不稳定,最终会导致请求发生堆积.Sentinel 熔断降级会在调用链路 ...

  7. Elasticsearch安装及遇到的问题(CentOS 7.3 64位)

    Elasticsearch安装 使用root用户创建一个其他用户,(elasticsearch不能在root账户下安装) # 添加一个名字是es工作组 groupadd es # 添加用户es设置密码 ...

  8. Error querying database. Cause: org.apache.ibatis.reflection.ReflectionException: There is no getter for property named 'ItemsCustom' in 'class com.pojo.OrderDetailCustom

    再用 junit 测试MyBatis时发现的错误: org.apache.ibatis.exceptions.PersistenceException: ### Error querying data ...

  9. 华为交换机SOCK CPU占用率高处理方法

    问题截图: 解决方法: cpu-defend policy cpu auto-defend enable auto-defend attack-packet sample 5 auto-defend ...

  10. 极*Java速成教程 - (3)

    Java语言基础 访问权限控制 Java是一个面向对象的语言,当你不是它所设计的要面向的对象时,它就不会给你看你不该看到的东西,也就是"访问权限控制". 亲疏有别,才能权限控制 包 ...