问题描述

You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

V A S E S
1 2 3 4 5
Bunches 1 (azaleas) 7 23 -5 -24 16
2 (begonias) 5 21 -4 10 23
3 (carnations) -21 5 -4 -20 20

According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

输入格式

  • The first line contains two numbers: F, V.

  • The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.

  • 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.

  • F <= V <= 100 where V is the number of vases.

  • -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

输出格式

The first line will contain the sum of aesthetic values for your arrangement.

样例输入

3 5

7 23 -5 -24 16

5 21 -4 10 23

-21 5 -4 -20 20

样例输出

53

题目大意

给你一些花和一些花瓶,其中花要放在花瓶里,花和花瓶的摆放必须按照编号顺序,即序号小的不能放在序号大的右边。每个花放在不同的花瓶中都有不同的贡献,求最大的贡献总和。

解析

一道比较水的线性动态规划。既然都只能按照顺序来摆放,那么每一个状态都只与它前面的状态有关。设f[i][j]表示前i朵花放在前j个花瓶里的最大贡献。那么我们可以用前面的摆放方式推出f[i][j]。设当前花为i,摆在前j个花瓶中,k为小于j的花瓶编号,那么有状态转移方程如下:

\[f[i][j]=max(f[i][j],f[i-1][k]+a[i][j])
\]

其中a[i][j]表示第i朵花放在第j个花瓶中的贡献。最后答案即为f[n][m]。

注意,(1)由于可能出现负数,f数组初始化时要设成负无穷大,边界状态还是设为0。(2)每次决定花瓶时要保证最后剩下的花瓶能够摆下剩下的花,前面的花瓶能够摆下前面已经摆过的花。

代码

#include <iostream>
#include <cstdio>
#define N 102
using namespace std;
int n,m,i,j,k,a[N][N],f[N][N];
int main()
{
cin>>n>>m;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++) cin>>a[i][j];
}
for(i=1;i<=n;i++){
for(j=1;j<=m;j++) f[i][j]=-(1<<30);
}
for(i=1;i<=m;i++) f[0][i]=0;
for(i=1;i<=n;i++){
for(j=i;j<=m-(n-i);j++){
for(k=i-1;k<j;k++){
f[i][j]=max(f[i][j],f[i-1][k]+a[i][j]);
}
}
}
cout<<f[n][m]<<endl;
return 0;
}

[CH5E02] A Little Shop of Flowers的更多相关文章

  1. sgu 104 Little shop of flowers 解题报告及测试数据

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB 问题: 你想要将你的 ...

  2. [POJ1157]LITTLE SHOP OF FLOWERS

    [POJ1157]LITTLE SHOP OF FLOWERS 试题描述 You want to arrange the window of your flower shop in a most pl ...

  3. SGU 104. Little shop of flowers (DP)

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  4. POJ-1157 LITTLE SHOP OF FLOWERS(动态规划)

    LITTLE SHOP OF FLOWERS Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19877 Accepted: 91 ...

  5. 快速切题 sgu104. Little shop of flowers DP 难度:0

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  6. poj1157LITTLE SHOP OF FLOWERS

    Description You want to arrange the window of your flower shop in a most pleasant way. You have F bu ...

  7. POJ 1157 LITTLE SHOP OF FLOWERS (超级经典dp,两种解法)

    You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flo ...

  8. Poj-1157-LITTLE SHOP OF FLOWERS

    题意为从每行取一瓶花,每瓶花都有自己的审美价值 第 i+1 行取的花位于第 i 行的右下方 求最大审美价值 dp[i][j]:取到第 i 行,第 j 列时所获得的最大审美价值 动态转移方程:dp[i] ...

  9. 【SGU 104】Little shop of flowers

    题意 每个花按序号顺序放到窗口,不同窗口可有不同观赏值,所有花都要放上去,求最大观赏值和花的位置. 分析 dp,dp[i][j]表示前i朵花最后一朵在j位置的最大总观赏值. dp[i][j]=max( ...

随机推荐

  1. 《图解设计模式》读书笔记7-2 Mediator模式

    目录 Mediator模式简介 示例程序 示例程序类图 代码 Mediator模式角色和类图 角色 模式类图 思路拓展 简单化 角色复用 Mediator模式简介 Mediator模式即中介者模式,可 ...

  2. Java ——if条件语句 switch语句

    本节重点思维导图  if条件语句 //如果条件表达式成立,执行语句块 if(条件表达式){ //…语句块 } 如果语句块只有一条语句,大括号可以省略,否则不能省略. 建议,不管有几条语句,都不要省略大 ...

  3. 应用安全 - 路由器 - D-LINK - 漏洞汇总

    D-Link D-Link DSL-2750B任意命令执行漏洞 CVE-2019-16920 影响范围 DIR- DIR-866L DIR- DHP- CVE-2017-7405 Date 类型 嗅探 ...

  4. hackinglab 基础关 writeup

    地址:http://hackinglab.cn/ 基础关 key在哪里? 很简单,点击过关地址,在新打开的网页中查看网页源代码就能在 HTML 注释中发现 key 再加密一次你就得到key啦~ 明文加 ...

  5. Scrapy框架的应用

    一, Scrapy Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍.所谓的框架就是一个已经被集成了各种功能(高性能异步下载,队列,分布式,解析,持久化等)的具有 ...

  6. 1897. tank 坦克游戏

    传送门 显然考虑 $dp$,发现时间只和当前位置和攻击次数有关,设 $F[i][j][k]$ 表示当前位置为 $i,j$ ,攻击了 $k$ 次得到的最大分数 初始 $f[1][1][k]$ 为位置 $ ...

  7. C#设计模式:命令模式(Command Pattern)

    一,什么是命令模式(Command Pattern)? 命令模式:将请求封装成命令对象,请求的具体执行由命令接收者执行: 二,如下代码 using System; using System.Colle ...

  8. Connection keepalive

    TCP    keepalive = 心跳包 linux  tcp keepalive 参数: tcp_keepalive_time:       7200 tcp_keepalive_intvl  ...

  9. Hibernate Validation与Spring整合各注解的用法Demo

    转自:https://www.aliyun.com/jiaocheng/1315650.html <dependency> <groupId>org.hibernate< ...

  10. Git 安装使用及基础命令

    Git终端软件安装 1.下载windows上git终端,类似shell工具,下载地址:http://msysgit.github.io/ 2. 安装方法,打开文件,一路点击Next即可 3.安装完成, ...