范数介绍:https://www.zhihu.com/question/20473040?utm_campaign=rss&utm_medium=rss&utm_source=rss&utm_content=title

首先介绍损失函数,它是用来估量你模型的预测值f(x)与真实值Y的不一致程度

主要的几种类型包括:1)0-1损失函数  2)平方损失函数   3)绝对损失函数  4) 对数损失函数

0-1损失函数:

平方损失函数:

绝对损失函数:

对数损失函数:

由此延伸出对应的概念:

其次介绍一般的范数表示:

范数包括向量范数和矩阵范数,向量范数表征向量空间中向量的大小,矩阵范数表征矩阵引起变化的大小。一种非严密的解释就是,对应向量范数,向量空间中的向量都是有大小的,这个大小如何度量,就是用范数来度量的,不同的范数都可以来度量这个大小

向量的范数:

1-范数,计算方式为向量所有元素的绝对值之和。

2-范数,计算方式跟欧式距离的方式一致。

 

矩阵的范数:

假设矩阵的大小为m∗n,即m行n列。

1-范数,又名列和范数。顾名思义,即矩阵列向量中绝对值之和的最大值。

2-范数,又名谱范数,计算方法为ATA矩阵的最大特征值的开平方。

其中λ1为的最大特征值。

 

正则化也就是经验风险项加上正则化项,从而达到对模型选择的目的,以做到从模型拟合效果(经验风险)和复杂度(正则化项)来选去最优模型。

正则化的一般表示形式为:

          

其中第一项表示经验风险,第二项表示正则化项

正则化可以表示为多个形式,以回归方程为例,由于其损失函数为平方损失,正则化表示为参数向量的L2范数:

        

在这里||w||表示参数向量w的L2范数。

正则化也可以表示为参数向量的L1范数

        

其中||w||表示参数向量w的L1范数

以上部分的经验风险表现越小模型越复杂,这时候正则化项为表现较大,所以我们主要还是筛选经验风险和正则化项同时较小的模型。

注:

L1范数因为表现出比L0范数更好的求解性而应用较为广泛

L2范数表现为向量各元素平方和求平方根,我们让L2范数的正则项||W||2最小,可以使得W的每个元素都很小,都接近于0。

正则化的L1范数和L2范数的更多相关文章

  1. L1范数与L2范数​

    L1范数与L2范数​ ​ L1范数与L2范数在机器学习中,是常用的两个正则项,都可以防止过拟合的现象.L1范数的正则项优化参数具有稀疏特性,可用于特征选择:L2范数正则项优化的参数较小,具有较好的抗干 ...

  2. L1范数与L2范数正则化

    2018-1-26 虽然我们不断追求更好的模型泛化力,但是因为未知数据无法预测,所以又期望模型可以充分利用训练数据,避免欠拟合.这就要求在增加模型复杂度.提高在可观测数据上的性能表现得同时,又需要兼顾 ...

  3. L1范数和L2范数

    给定向量x=(x1,x2,...xn)L1范数:向量各个元素绝对值之和L2范数:向量各个元素的平方求和然后求平方根Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方L∞范数:向量各个元素求绝对值 ...

  4. Lp距离, L1范数, 和L2范数(转载)

    范式可以理解成距离 转载自: https://blog.csdn.net/hanhuili/article/details/52079590 内容如下: 由此可见,L2其实就是欧式距离.工程上,往往不 ...

  5. L0、L1、L2范数正则化

    一.范数的概念 向量范数是定义了向量的类似于长度的性质,满足正定,齐次,三角不等式的关系就称作范数. 一般分为L0.L1.L2与L_infinity范数. 二.范数正则化背景 1. 监督机器学习问题无 ...

  6. paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  7. 机器学习中的范数规则化之(一)L0、L1与L2范数(转)

    http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...

  8. L0、L1与L2范数、核范数(转)

    L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大 ...

  9. 机器学习中的范数规则化之(一)L0、L1与L2范数 非常好,必看

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

随机推荐

  1. 关闭Linux无用端口

    关闭系统不必要的端口,增强系统安全,此处以关闭111端口为例进行说明. 1).查看本机正在监听的端口: [root@b ~]# netstat -tlnup Active Internet conne ...

  2. 重拾SQL——从无到有

    2016.10.22 因为工作需要,在这里提前重拾sql. 0.创建并选择数据库 mysql> SHOW DATABASES; +--------------------+ | Database ...

  3. 简单DP入门(一) 数字三角形

    数字三角形

  4. mssql 堆叠注入

    添加用户 exec master.dbo.xp_cmdshell 'net user leeww 123456 /add' 提升权限 exec master.dbo.xp_cmdshell 'net ...

  5. 前端 CSS的选择器 基本选择器 类选择器

    类选择器 符号是.开头 然后类的名字 样式类名不要用数字开头(有的浏览器不认). 所谓类就是class,.class与id非常相似,任何标签都可以加类,但是类可以重复 通过样式类选择元素: 示例: & ...

  6. tomcat 端口8080占用问题

    启动tomcat时,有时会出现8080端口占用的问题. 解决方法: 终端:ps -e | grep tomcat 会看到下边的结果 途中标记的是进程号,kill掉即可. kill -9 9734(97 ...

  7. [19/05/18-星期六] HTML_form标签

    一.form标签(一) <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> & ...

  8. JAVA Error:The project was not built since its build path is incomplete. Cannot find the class file for java.util.Map$Entry.....

    今天,学习Netty框架时遇到error:Description Resource Path Location Type:The project was not built since its bui ...

  9. JavaWeb servlet,乱码的原因和解决

    请求为什么会有乱码? 答:当表单提交时,浏览器对中文参数值进行编码(使用打开表单所在的页面时的字符集进行编码,web服务器在默认情况下会使用iso-8859-1去解码,编码和解码方式不一致,就会产生乱 ...

  10. java 线程池(线程的复用)

    一. 线程池简介 1. 线程池的概念: 线程池就是首先创建一些线程,它们的集合称为线程池.使用线程池可以很好地提高性能,线程池在系统启动时即创建大量空闲的线程,程序将一个任务传给线程池,线程池就会启动 ...