c++实现哈夫曼树,哈夫曼编码,哈夫曼解码(字符串去重,并统计频率)
#include <iostream>
#include <iomanip>
#include <string>
#include <cstdlib>
using namespace std; //定义哈夫曼树存储结构
typedef struct
{
char data; //存放结点数据
int weight; //记录结点权值
int parent, lchild, rchild;
}HTNode, * HuffmanTree; //哈夫曼编码存储表示
typedef char** HuffmanCode; //动态分配数组储存哈夫曼编码表 //初始化
HuffmanTree InitHuffman(HuffmanTree& HT, int n)
{
if (n < )
{
cout << "输入初态结点数目不正确!!!" << endl;
return NULL;
}
else
{
int m = * n - ; //n个叶子结点的哈夫曼树有2n-1个结点
HT = new HTNode[m + ]; //0号单元未用,申请m+1个空间
for (int i = ; i <= m; i++)
{
HT[i].parent = ;
HT[i].lchild = ;
HT[i].rchild = ;
HT[i].weight = ;
HT[i].data = '-';
} //输入初始数据,为了方便理解HT[0]不存放数据
cout << "请输入初态结点数据及相应权值(格式形式:a 3):";
for (int i = ; i <= n; i++)
{
cin >> HT[i].data;
cin >> HT[i].weight;
}
return HT;
}
} //打印HT
void PrintState(HuffmanTree& HT, int n)
{
int m = * n - ; //总结点数
cout << "结点i\tdata值\tweight\tparent\tlchild\trchild" << endl;
for (int i = ; i <= m; i++)
{
cout << setw() << i << "\t";
cout << setw() << HT[i].data << "\t";
cout << setw() << HT[i].weight << "\t";
cout << setw() << HT[i].parent << "\t";
cout << setw() << HT[i].lchild << "\t";
cout << setw() << HT[i].rchild << "\t" << endl;
}
} //选择双亲域为0且两权值最小的结点,选择范围为1到i-1
int* Select(HuffmanTree& HT, int n, int* Idx)
{
int MIN, MinSecond;
//打擂台法使权最小值和次权最小值最大(假设第一个值权值最小无法进行)
MIN = MinSecond = ;
//循环从1到n次
for (int i = ; i <= n; i++)
{
//如果双亲为0(未删除结点与新生成结点),一定会执行if语句,寻找权最小值
if ((HT[i].parent == ) && HT[i].weight < MIN)
{
//将最小的权值给MinSecond方便寻找次最小值
MinSecond = MIN;
MIN = HT[i].weight;
//记录权最小值下标
Idx[] = i;
}
//否则如果满足条件寻找次最小值
else if ((HT[i].parent == ) && HT[i].weight < MinSecond)
{
MinSecond = HT[i].weight;
//记录权次最小值下标
Idx[] = i;
} }
return Idx;
} //构造哈夫曼树
void CreateHuffmanTree(HuffmanTree& HT, int n)
{
if (n <= )
return; int m = * n - ; //n个叶子结点的哈夫曼树有2n-1个结点
//从n+1开始构造哈弗曼树
for (int i = n + ; i <= m; i++)
{
//Idx用于存放两个返回最小权值的下标,i-1为前n个结点,后面随着i增加,n也增加
int* Idx = Idx = new int[];
Idx = Select(HT, i - , Idx);
int s1 = Idx[]; //权最小值下标
int s2 = Idx[]; //权次最小值下标
//给两权值最小的结点置双亲,使s1,s2结点不在录入Select范围
HT[s1].parent = i;
HT[s2].parent = i; //给新节点i左右孩子置位s1,s2
HT[i].lchild = s1;
HT[i].rchild = s2; //给新结点赋权值
HT[i].weight = HT[s1].weight + HT[s2].weight;
delete[]Idx;
}
} //哈夫曼编码
void CreateHuffmanCode(HuffmanTree& HT, HuffmanCode& HC, int n)
{
HC = new char* [n + ]; //分配字符的空间
char* TempCode = new char[n]; //分配临时编码表空间n个
TempCode[n - ] = '\0'; //编码有叶子结点开始逆序存放,先将末尾结束符标志打上,为后序strcpy
//for循环逐个逆序求叶子结点的哈夫曼编码
for (int i = ; i <= n; i++)
{
int start = n - ; //开始存放的起点指向末尾,用于后面HC拷贝是的起始地址
int NodeIdx = i; //NodeIdx最开始存放叶子结点序号
int ParentsIdx = HT[i].parent; //Parents指向其双亲结点序号
//若有双亲则由下到上进行编码,编码的字符,从序号1开始
while (ParentsIdx)
{
start--; //在一维数组末尾,strat先指向最后
//若双亲结点的左结点序号为NodeIdx,将0打入一维临时数组中,否则打入1
if (HT[ParentsIdx].lchild == NodeIdx)
TempCode[start] = '';
else
TempCode[start] = '';
//结点的序号更新,进入上一层
NodeIdx = ParentsIdx;
ParentsIdx = HT[NodeIdx].parent;
}
//临时一维数组存放编码成功,开始用HC顺序存放字符编码
HC[i] = new char[n - start]; //为序号为i的字符分配编码空间
strcpy_s(HC[i], n - start, &TempCode[start]); //编码字符串拷贝strcpy报错因为没有指定长度
}
//打印哈夫曼编码
cout << "---字符对应编码----" << endl;
for (int i = ; i <= n; i++)
{
cout << HT[i].data << "\t\t" << HC[i] << endl;
}
delete []TempCode;
} //输入字符打印哈夫曼编码
void PrintCode(HuffmanTree & HT, HuffmanCode & HC, int n)
{
char *str =new char[]; //存储需要解码的字符
int flag = ; //flag用于检查输入是否错误
cout << "请输入需要编码的字符:";
cin >> str;
//匹配字符并打印相应的哈夫曼编码
cout << "输入的字符哈夫曼编码为:";
for (int j = ; j < strlen(str); j++)
{
flag = ;
for (int i = ; i <= n; i++)
{
//匹配成功打印编码
if (HT[i].data == str[j])
{
cout << HC[i] ;
flag = ; //匹配成功
}
}
//如果有匹配失败的情况,则跳出循环
if (flag == )
{
cout << "\n第" << j+ << "字符输入错误!" ;
break;
} }
putchar();
delete []str; //释放str空间
} //哈夫曼解码并打印
void HuffmanDecode(HuffmanTree& HT, int n)
{
char* str = new char[];
cout << "请输入二进制编码:";
cin >> str; int flag = ; //用于检查二进制编码是否输入错误
cout << "解码对应字符为:";
//遍历二进制编码
for (int i = ; i < strlen(str);)
{
int Root = * n - ; //Root为根结点序号
//当结点的左右孩子不为空时进入循环,由根结点进入
while (HT[Root].lchild && HT[Root].rchild)
{
if (str[i] == '')
Root = HT[Root].lchild;
else if (str[i] == '')
Root = HT[Root].rchild;
else
{
cout << "输入的二级制编码有误!" << endl;
flag = ;
break;
}
i++; //相后读取二进制编码,i值更新
}
//如果找到错误跳出循环
if (flag)
break;
//打印编码对应字符
cout << HT[Root].data;
}
delete []str;
} int main()
{
int n;
cout << "请输入哈夫曼树初态结点数:";
cin >> n; //初始化哈夫曼树
HuffmanTree HT = InitHuffman(HT, n);
//打印HT初态
cout << "--------------------HT初态--------------------" << endl;
PrintState(HT, n);
//构造哈夫曼树
CreateHuffmanTree(HT, n);
//打印HT终态
cout << "--------------------HT终态--------------------" << endl;
PrintState(HT, n); HuffmanCode HC;
//哈夫曼编码-由下而上
CreateHuffmanCode(HT, HC, n);
//打印字符对应编码
PrintCode(HT, HC, n);
//哈夫曼解码并打印-由上而下
HuffmanDecode(HT, n); return ;
}
//由于编译器版本原因strcpy出现不安全原因,导致无法运行,后使用strcpy_s给予拷贝长度得到解决;把“==”写成“=”导致报错;
/*
输入字符串统计字符个数(权值)
int CreateWeightArray(char* str, int* Array) {
//初始化权值数组,128为str[i]的最大数值
for (int i = 0; i < 128; i++)
{
Array[i] = 0;
}
int length = 0;
//利用下标记录位权
for (int i = 0; str[i]; i++)
{
Array[str[i]]++; //值加1,下标即字符
}
//统计字符串去重后的长度
for (int i = 0; i < 128; i++)
{
if (Array[i] != 0)
{
length++;
}
}
return length;
}
*/
c++实现哈夫曼树,哈夫曼编码,哈夫曼解码(字符串去重,并统计频率)的更多相关文章
- 20172332 2017-2018-2 《程序设计与数据结构》Java哈夫曼编码实验--哈夫曼树的建立,编码与解码
20172332 2017-2018-2 <程序设计与数据结构>Java哈夫曼编码实验--哈夫曼树的建立,编码与解码 哈夫曼树 1.路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子 ...
- [C++]哈夫曼树(最优满二叉树) / 哈夫曼编码(贪心算法)
一 哈夫曼树 1.1 基本概念 算法思想 贪心算法(以局部最优,谋求全局最优) 适用范围 1 [(约束)可行]:它必须满足问题的约束 2 [局部最优]它是当前步骤中所有可行选择中最佳的局部选择 3 [ ...
- 采用C++实现哈夫曼树的创建并输出哈夫曼编码
一.这篇随笔来自一道信息论的作业题,因为手动编码过于复杂,所以想到了编程解决,原题目如下图所示: 二.源代码如下: #include <iostream> #include <str ...
- 哈夫曼树【最优二叉树】【Huffman】
[转载]只为让价值共享,如有侵权敬请见谅! 一.哈夫曼树的概念和定义 什么是哈夫曼树? 让我们先举一个例子. 判定树: 在很多问题的处理过程中,需要进行大量的条件判断,这些判断结构的设 ...
- 数据结构之C语言实现哈夫曼树
1.基本概念 a.路径和路径长度 若在一棵树中存在着一个结点序列 k1,k2,……,kj, 使得 ki是ki+1 的双亲(1<=i<j),则称此结点序列是从 k1 到 kj 的路径. 从 ...
- C++哈夫曼树编码和译码的实现
一.背景介绍: 给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的 ...
- 哈夫曼树(三)之 Java详解
前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:htt ...
- 哈夫曼树(二)之 C++详解
上一章介绍了哈夫曼树的基本概念,并通过C语言实现了哈夫曼树.本章是哈夫曼树的C++实现. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载 ...
- 哈夫曼树(一)之 C语言详解
本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若 ...
- 【算法】赫夫曼树(Huffman)的构建和应用(编码、译码)
参考资料 <算法(java)> — — Robert Sedgewick, Kevin Wayne <数据结构> ...
随机推荐
- 修改ps工具栏字体大小
修改ps工具栏字体大小 先改电脑分辨率或者改首选项--界面---文字,退出后,重新打开,但你会发现问题还是没解决,我们接着往下 找到文件夹安装目录下的photoshops.exe启动文件(查找方法 ...
- 二进制部署k8s
一.二进制部署 k8s集群 1)参考文章 博客: https://blog.qikqiak.com 文章: https://www.qikqiak.com/post/manual-install-hi ...
- 踩坑,vue项目中,main.js引入scss文件时报错
当我们在src目录下创建.scss文件,并在main.js中引用,运行时会报: ERROR Failed to compile with 1 errors 5:25:07 PMThis relativ ...
- mysql 8.0.15忘记密码重置方法
1.打开命令窗口cmd,输入命令:net stop mysql,停止MySQL服务, 2.开启跳过密码验证登录的MySQL服务 输入命令 mysqld --console --skip-grant-t ...
- Codeforces Round #420 (Div. 2) - E
题目链接:http://codeforces.com/contest/821/problem/E 题意:起初在(0,0),现在要求走到(k,0),问你存在多少种走法. 其中有n条线段,每条线段为(a, ...
- ltp-ddt nand_mtd_dd_rw_jffs2
error: 由于在uboot下没有发现坏块,将核心代码剥离出来调试: flash_eraseall -q -j /dev/mtd1mkdir -p /mnt/partition_nand_1419m ...
- Morphia开发简介
1. 什么是Morphia Morphia是一个开放源代码的对象关系映射框架,它对MongoDB数据库 java版驱动进行了非常轻量级的对象封装,使得Java程序员可以随心所欲的使用对象编程思维来操纵 ...
- CF960G Bandit Blues 第一类斯特林数+分治+FFT
题目传送门 https://codeforces.com/contest/960/problem/G 题解 首先整个排列的最大值一定是 \(A\) 个前缀最大值的最后一个,也是 \(B\) 个后缀最大 ...
- BZOJ5261 Rhyme
传送门 广义后缀自动机= =+ 跟ptx大爷的博客学的 戳我传送 我写的第一种 建立Trie树的写法 bfs建立SAM 为什么是bfs呢 我也不知道(GG) 经过我一番抱大腿+询问 各位大爷说的原因是 ...
- python读文件的4种方式
1.直接打开就读 with open('filepath','r') as f: for line in f: print(line) print('一行数据') 虽然f是一个文件实例,但可以通过以上 ...