吴恩达深度学习:2.15python中的广播
1.Broadcasting example
(1)下面矩阵描述了来自四种不同的100克碳水化合物,蛋白质和脂肪的卡路里数量

比如说100g苹果所含的热量有56克来自碳水化合物,相比之下来自蛋白质和脂肪的卡路里数就很少了。相反,100g的牛肉,有104卡路里来自蛋白质,135克来自脂肪,没有卡路里来自碳水化合物。现在我们来计算一下四种食物中,有多少卡路里的百分比来自碳水化合物、蛋白质和脂肪。比如apple这一列,100g苹果有56+1.2+1.8=59卡路里,然后苹果中来自碳水化合物的卡路里百分比是56/59=94.9%,所苹果中的而大部分热量来自碳水化合物;相比之下,牛肉中的卡路里都是来自蛋白质和脂肪了。

(2)接下来看看计算是怎么运行的,我们有3x4的矩阵,除以一个1x4的矩阵,那么怎么能够让一个3x4的矩阵来除以一个1x4的矩阵呢?接下来看看更多的广播的例子,如果取一个4x1的向量,让她和一个数字相加,numpy会自动将数字展开,变成一个1x4的向量,就像这样:

这种广播对列向量和行向量一样有用。比如有一个2x3的矩阵,让它加上一个1x3的矩阵,numpy会赋值后面矩阵m次,将其变为mxn矩阵,而不是一个1x3的矩阵,比如下面的这个矩阵,numpy会复制两次,将其变为下面的这种形式:

所以2x3的矩阵会让与他们相加,就会变为下面的这种形式:

(3)最后一个例子,无论有没有mxn的矩阵,都可以让其加上一个mx1的向量,或者1xm的矩阵,然后进行复制,
吴恩达深度学习:2.15python中的广播的更多相关文章
- 吴恩达深度学习:python中的广播
1.python中的广播: (1)广播是一种手段,可以让python代码执行得更快,我们来看看python实际如何执行. 下面矩阵列出了100克苹果.牛肉.鸡蛋和蛋白质中含有的碳水化合物.蛋白质和脂肪 ...
- 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)
我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...
- 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)
学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...
- 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决
问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...
- 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...
- 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧
由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...
- 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响
博主 撸的 该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...
- Coursera 吴恩达 深度学习 学习笔记
神经网络和深度学习 Week 1-2 神经网络基础 Week 3 浅层神经网络 Week 4 深层神经网络 改善深层神经网络 Week 1 深度学习的实用层面 Week 2 优化算法 Week 3 超 ...
- 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(二)
经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络.网络深度逐渐增加,训练的参数数量也骤增.AlexNet大约6000万参数,VGG大约上亿参数. 从中我们可 ...
随机推荐
- Anaconda cheat sheet
1 anaconda prompt 闪退的情况 在cmd中进入C:\ProgramData\Anaconda3\Scripts然后可以使用各种conda命令 2 anaconda 换源 # 方法参考 ...
- spring 手动注册bean
//将applicationContext转换为ConfigurableApplicationContext ConfigurableApplicationContext configurableAp ...
- 菜鸟requireJS教程---1、初识requirejs
菜鸟requireJS教程---1.初识requirejs 一.总结 一句话总结: Using a modular script loader like RequireJS will improve ...
- windows环境安装nexus
1.下载安装nexus安装包,我用的是nexus-2.14.13-01版本 2. 以管理员身份打开cmd命令窗口 3.进入到nexus bin目录下 输入命令 nexus install 4. 启动 ...
- Android WebView使用与JavaScript使用
WebView基本使用 WebView是View的一个子类,可以让你在activity中显示网页. 可以在布局文件中写入WebView:比如下面这个写了一个填满整个屏幕的WebView: <?x ...
- js开发问题
error: npm ERR! code ELIFECYCLE npm ERR! errno 1 npm ERR! sha3@1.2.0 install: `node-gyp rebuild` npm ...
- redis源码分析之数据结构:跳跃表
跳跃表是一种随机化的数据结构,在查找.插入和删除这些字典操作上,其效率可比拟于平衡二叉树(如红黑树),大多数操作只需要O(log n)平均时间,但它的代码以及原理更简单. 和链表.字典等数据结构被广泛 ...
- flask包request获取参数
原博文:https://www.cnblogs.com/wangjikun/p/6935592.html request.method #获取请求方法request.form #获取post请求所有参 ...
- 【汇总】Windows linux 敏感目录 路径汇总
日期:2019-08-02 10:53:52 更新:2019-08-19 15:48:01 作者:Bay0net 介绍:中间件.套件等等敏感信息,做个记录. 0x01. 基本信息 遇到文件包含.任意文 ...
- SQL Server 批量创建作业(备份主分区)
一. 需求背景 在我的数据库实例中,有很多类似下图所示的数据库,这些数据库的名称是有规律的,每个数据库包含的表都是相同的,其中2个表是类似流水记录的表,表的数据量会比较大,占用的空间有几十G到上百G不 ...