1.Broadcasting example

  (1)下面矩阵描述了来自四种不同的100克碳水化合物,蛋白质和脂肪的卡路里数量

  

  比如说100g苹果所含的热量有56克来自碳水化合物,相比之下来自蛋白质和脂肪的卡路里数就很少了。相反,100g的牛肉,有104卡路里来自蛋白质,135克来自脂肪,没有卡路里来自碳水化合物。现在我们来计算一下四种食物中,有多少卡路里的百分比来自碳水化合物、蛋白质和脂肪。比如apple这一列,100g苹果有56+1.2+1.8=59卡路里,然后苹果中来自碳水化合物的卡路里百分比是56/59=94.9%,所苹果中的而大部分热量来自碳水化合物;相比之下,牛肉中的卡路里都是来自蛋白质和脂肪了。

  (2)接下来看看计算是怎么运行的,我们有3x4的矩阵,除以一个1x4的矩阵,那么怎么能够让一个3x4的矩阵来除以一个1x4的矩阵呢?接下来看看更多的广播的例子,如果取一个4x1的向量,让她和一个数字相加,numpy会自动将数字展开,变成一个1x4的向量,就像这样:

  这种广播对列向量和行向量一样有用。比如有一个2x3的矩阵,让它加上一个1x3的矩阵,numpy会赋值后面矩阵m次,将其变为mxn矩阵,而不是一个1x3的矩阵,比如下面的这个矩阵,numpy会复制两次,将其变为下面的这种形式:

 

  所以2x3的矩阵会让与他们相加,就会变为下面的这种形式:

(3)最后一个例子,无论有没有mxn的矩阵,都可以让其加上一个mx1的向量,或者1xm的矩阵,然后进行复制,

吴恩达深度学习:2.15python中的广播的更多相关文章

  1. 吴恩达深度学习:python中的广播

    1.python中的广播: (1)广播是一种手段,可以让python代码执行得更快,我们来看看python实际如何执行. 下面矩阵列出了100克苹果.牛肉.鸡蛋和蛋白质中含有的碳水化合物.蛋白质和脂肪 ...

  2. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  3. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  4. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  5. 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录

    吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...

  6. 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧

    由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...

  7. 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响

    博主 撸的  该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...

  8. Coursera 吴恩达 深度学习 学习笔记

    神经网络和深度学习 Week 1-2 神经网络基础 Week 3 浅层神经网络 Week 4 深层神经网络 改善深层神经网络 Week 1 深度学习的实用层面 Week 2 优化算法 Week 3 超 ...

  9. 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(二)

    经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络.网络深度逐渐增加,训练的参数数量也骤增.AlexNet大约6000万参数,VGG大约上亿参数. 从中我们可 ...

随机推荐

  1. Wordpress可以用来做什么?

    WordPress本身只是一款开源的.基于PHP的博客软件,但是由于WordPress的源码开源.结构优良.插件丰富.主题繁多,以至于是 WordPress成为世界上最流行的博客程序.<Word ...

  2. JS基础_强制类型转换

    强制类型转换 将一个数据类型强制转换为其他的数据类型 类型转换主要指,将其他数据类型,转换为 string.number.boolean 1.将其他数据类型转换为string(返回值是强转后类型的值) ...

  3. Golang协程实现流量统计系统(3)

    进程.线程.协程 - 进程:太重 - 线程:上下文切换开销太大 - 协程:轻量级的线程,简洁的并发模式 Golang协程:goroutine Hello world package main impo ...

  4. CentOS7 一个网卡配置多个IP地址

    1.给网卡p8p1新创建配置文件(复制原来的p8p1,修改IP地址即可) ifcfg-p8p1:0 vim  /etc/sysconfig/network-scripts/ifcfg-p8p1:0 D ...

  5. SpringBoot上传文件临时失效问题

    线上的系统中不能上传文件了,出现如下错误: org.springframework.web.multipart.MultipartException: Could not parse multipar ...

  6. hud 5750 Dertouzos

    Dertouzos Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  7. Error-ASP.NET:编译器错误消息: CS0016: 未能写入输出文件

    ylbtech-Error-ASP.NET:编译器错误消息: CS0016: 未能写入输出文件 1.返回顶部 1. “/”应用程序中的服务器错误. 编译错误 说明: 在编译向该请求提供服务所需资源的过 ...

  8. demo-website配置记录

    demo-website环境配置, 主要是下载flask相关的模块: 1. python安装的是2.7版本. 2. pip install flask pip install flask-httpau ...

  9. JPA访问数据库的几种方式

    JPA访问数据库的几种方式 本文为原创,转载请注明出处:https://www.cnblogs.com/supiaopiao/p/10901793.html 1. Repository 1.1. 通过 ...

  10. Pytorch笔记 (3) 科学计算1

    一.张量 标量 可以看作是  零维张量 向量 可以看作是  一维张量 矩阵 可以看作是  二维张量 继续扩展数据的维度,可以得到更高维度的张量 ————>  张量又称 多维数组 给定一个张量数据 ...