Acwing-282-石子合并(区间DP)
链接:
https://www.acwing.com/problem/content/284/
题意:
设有N堆石子排成一排,其编号为1,2,3,…,N。
每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。
每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有4堆石子分别为 1 3 5 2, 我们可以先合并1、2堆,代价为4,得到4 5 2, 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24;
如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22。
问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
思路:
区间DP模板题, 枚举区间长度.
代码:
#include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
int Dp[500][500];
int a[500], Sum[500];
int n;
int main()
{
scanf("%d", &n);
for (int i = 1;i <= n;i++)
scanf("%d", &a[i]), Sum[i] = Sum[i-1]+a[i];
for (int i = 1;i <= n;i++)
{
for (int j = 1;j <= n;j++)
{
Dp[i][j] = INF;
if (i == j)
Dp[i][j] = 0;
}
}
for (int len = 2;len <= n;len++)
{
for (int l = 1;l <= n-len+1;l++)
{
int r = len+l-1;
for (int k = l;k < r;k++)
{
Dp[l][r] = min(Dp[l][r], Dp[l][k]+Dp[k+1][r]+Sum[r]-Sum[l-1]);
}
}
}
printf("%d\n", Dp[1][n]);
return 0;
}
Acwing-282-石子合并(区间DP)的更多相关文章
- 洛谷 P1880 [NOI1995] 石子合并(区间DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...
- 石子合并 区间dp模板
题意:中文题 Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合 ...
- HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结
题意:给定一个字符串 输出回文子序列的个数 一个字符也算一个回文 很明显的区间dp 就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...
- 石子合并 区间DP模板题
题目链接:https://vjudge.net/problem/51Nod-1021 题意 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石 ...
- 洛谷 P1080 石子合并 ( 区间DP )
题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...
- 石子合并——区间dp
石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分, ...
- 洛谷P1880 石子合并(环形石子合并 区间DP)
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- HRBUST - 1818 石子合并 区间dp入门
有点理解了进阶指南上说的”阶段,状态和决策“ /* 区间dp的基础题: 以区间长度[2,n]为阶段,枚举该长度的区间,状态dp[l][r]表示合并区间[l,r]的最小费用 状态转移方程dp[l][r] ...
- HDU 3506 (环形石子合并)区间dp+四边形优化
Monkey Party Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)Tot ...
- P1880 [NOI1995]石子合并 区间dp+拆环成链
思路 :一道经典的区间dp 唯一不同的时候 终点和起点相连 所以要拆环成链 只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...
随机推荐
- win10相机打不开,显示错误代码0xA00F4246(0x800706D9)
有时我们在不知道什么情况下电脑便会变成这个样子,当我们以为是驱动问题的时候,或许我们可以使用下面的办法解决这个问题 方法: 1.WIN键+R打开命令端,输入regedit运行 2.进入 计算机\HKE ...
- 【Linux开发】linux设备驱动归纳总结(六):1.中断的实现
linux设备驱动归纳总结(六):1.中断的实现 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ...
- EntityFramework数据迁移(笔记)
1.启用迁移 在Package Manager Console中运行Enable-Migrations命令 此命令已将Migrations文件夹添加到我们的项目中,此新文件夹包含两个文件: Confi ...
- C语言|作业07
一.本周作业头 这个作业属于那个课程 C语言程序设计II 这个作业要求在哪里 https://i-beta.cnblogs.com/posts/edit;postId=11811545 我在这个课程的 ...
- vim配置及插件安装笔记
1. 首先打开vim的配置文件vimrc,并加入以下常用的配置: cd ~ mkdir .vim vim .vimrc " 设置当文件被改动时自动载入 set autoread " ...
- 如何重装mysql8及初次修改密码
首先在设置里卸载旧版的mysql 然后把你之前的安装的mysql文件夹整个删掉 然后删除注册表的MySQL信息 安装新版的MySQL 新建并配置my-default.ini文件 如下: [mysqld ...
- Python中的 _init__和 _new__的区别
使用python 的面向对象写过程序之后,相信童鞋对 __init__ 方法已经非常的熟悉了.这个方法通常是 在初始化一个实例的时候使用的. 例如: class MysqlConnector(obje ...
- HTML页面左上角图标
显示网页左上角标志图标 <link rel="shortcut icon"type="image/x-icon"href="images/fav ...
- 以石子合并为例的区间DP
区间DP,是一类具有较为固定解法的DP,一般的思路都是: first.初始化区间长度为1的情况(一般区间长度为1的较易于初始化) second. for(枚举区间长度2~n){ for(枚举左端点){ ...
- python基础面试题(全网最全!)
目录 1.为什么学习Python? 2.通过什么途径学习的Python? 3.Python和Java.PHP.C.C#.C++等其他语言的对比? 4.简述解释型和编译型编程语言? 5.Python解释 ...