hiho #1043 : 完全背包
01背包和完全背包解析
在上一节的01背包中,每种物品只能使用一次。
初始化j=V,逆序推能够保证 dp[v-c[i]] 保存的是状态是 dp[i-1][v-c[i]] ,也就是每个物品只被使用了一次;
而完全背包,每件物品的次数可以是0,也可以是任意次。
顺序的话 dp[v - c[i]] 保存的是 dp[i][v - c[i]] ,每个物品有可能被使用多次,也就是完全背包问题的解法。
//01背包
for(i = 0; i < N; i++)
{
for (j = V; j >= c[i]; j--) //
{
dp[j] = max(dp[j], dp[j - c[i]] + v[i]);
}
}
//完全背包
for (int i = ; i < N; i++)
{
for (int j = c[i]; j <= V; j++) //
{
dp[j] = max(dp[j], dp[j - c[i]] + v[i]);
}
}
题目:
#1043 : 完全背包
描述
且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了!
等等,这段故事为何似曾相识?这就要从平行宇宙理论说起了………总而言之,在另一个宇宙中,小Ho面临的问题发生了细微的变化!
小Ho现在手上有M张奖券,而奖品区有N种奖品,分别标号为1到N,其中第i种奖品需要need(i)张奖券进行兑换,并且可以兑换无数次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪些奖品,使得这些奖品的喜好值之和能够最大。
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第一行为两个正整数N和M,表示奖品的种数,以及小Ho手中的奖券数。
接下来的n行描述每一行描述一种奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。
测试数据保证
对于100%的数据,N的值不超过500,M的值不超过10^5
对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3
输出
对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。
- 样例输入
-
5 1000
144 990
487 436
210 673
567 58
1056 897 - 样例输出
-
5940
AC代码:
#include "iostream"
#include "algorithm" using namespace std; int N, V;
int c[], v[];
int dp[]; int main()
{
while (cin >> N >> V)
{
for (int i = ; i < N; i++)
{
cin >> c[i] >> v[i];
}
//逆序推能够保证 f[v-c[i]] 保存的是状态是 f[i-1][v-c[i]] ,也就是每个物品只被使用了一次;
for (int i = ; i < N; i++)
{
//顺序的话 f[v - c[i]] 保存的是 f[i][v - c[i]] ,每个物品有可能被使用多次,也就是完全背包问题的解法。
for (int j = c[i]; j <=V; j++)
{
dp[j] = max(dp[j], dp[j - c[i]] + v[i]);
}
} cout << dp[V] << endl;
}
}
hiho #1043 : 完全背包的更多相关文章
- hihocoder 1043 完全背包
#1043 : 完全背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的 ...
- hihoCoder #1043 : 完全背包(板子题)
#1043 : 完全背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的 ...
- hihoCoder 1043 完全背包 (dp)
http://hihocoder.com/problemset/problem/1043 动态转移方程 :for v=cost..V f[v]=max(f[v],f[v-c[i]]+w[i]); #i ...
- hiho #1038 : 01背包 (dp)
#1038 : 01背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励 ...
- HihoCoder
#1043 : 完全背包 20160516 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到 ...
- HihoCoder第七周:完全背包问题
1043 : 完全背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时 ...
- hiho 第七周 完全背包
完全背包 #include<iostream> #include<memory.h> #include<cmath> using namespace std; #d ...
- hiho 第六周 01背包
简单的01背包,没有报名,这周的没有权限提交 #include<iostream> #include<memory.h> using namespace std; #defin ...
- 【HIHOCODER 1043】题目1 : 完全背包
描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了! 等等,这段故事为何似曾相识?这就要从平行宇宙理论说起了---总而言之,在另一个宇宙中,小 ...
随机推荐
- (转)Dubbo + Zookeeper入门初探
一.搭建java和tomcat环境 二.搭建zookeeper 三.搭建dubbo监控中心 四.配置项目 4.1 服务提供方代码 4.2 服务使用方代码 五.测试 2018年2月15日,阿里巴巴的du ...
- Linux 操作命令简
一.Linux命令及获取帮助 1.Linux命令的格式1)了解Linux命令的语法格式:命令 [选项] [参数]2)掌握命令格式中命令.选项.参数的具体含义a)命令:告诉Linux(UNIX)操作系统 ...
- 给Date的构造函数添加属性和方法
let d = Date.prototype; Object.defineProperties(d, { 'year': { get: function () { return this.getFul ...
- 【GO】一个容易踩坑的内外变量屏蔽问题
package main import ( "errors" "fmt" ) func et()(string,error){ return "&qu ...
- Java十大bug之——包冲突
找bug就像破案,有的bug简单,有的bug复杂,还有的bug隐藏的令人难以发现. 一个逻辑上看起来一切都正常,结果确有问题,且怎么分析都感觉自己写的没问题的情况——包冲突 遇到这个bug最开始没有任 ...
- Js 原型,原型链
原型,原型链 原型:在JavaScript中原型是一个prototype对象,用于表示类型之间的关系. 原型链:JavaScript万物都是对象,对象和对象之间也有关系,并不是孤立存在的.对象之间的继 ...
- zabbix监控ssl证书过期时间
获取证书过期时间脚本: /etc/zabbix/scripts/check-cert-expire.sh: #!/bin/bash host=$ port=$ end_date=`/usr/bin/o ...
- vue组件添加事件@click.native
1,给vue组件绑定事件时候,必须加上native ,否则会认为监听的是来自Item组件自定义的事件 2,等同于在子组件中: 子组件内部处理click事件然后向外发送click事件:$emit(&q ...
- 从入门到自闭之Python列表,元祖及range
1.列表 数据类型之一,存储数据,大量的,存储不同类型的数据 列表是一种有序的容器 支持索引 列表是一种可变数据类型 原地修改 列表中只要用逗号隔开的就是一个元素,字符串中只要是占一个位置的就是一个元 ...
- LeetCode 初次使用 两数之和的训练
首先看到示例: 给定 nums = [2, 7, 11, 15], target = 9 因为 nums[0] + nums[1] = 2 + 7 = 9 所以返回 [0, 1] 想到,我可以先在nu ...