1、调节reduce端缓冲区大小避免OOM异常

  1.1 为什么要调节reduce端缓冲区大小

    对于map端不断产生的数据,reduce端会不断拉取一部分数据放入到缓冲区,进行聚合处理;

    当map端数据特别大时,reduce端的task拉取数据是可能全部的缓冲区都满了,此时进行reduce聚合处理时创建大量的对象,导致OOM异常;

  1.2 如何调节reduce端缓冲区大小

    当由于以上的原型导致OOM异常出现是,可以通过减小reduce端缓冲区大小来避免OOM异常的出现

    但是如果在内存充足的情况下,可以适当增大reduce端缓冲区大小,从而减少reduce端拉取数据的次数,提供性能。

//调节reduce端缓存的大小(默认48M)
conf.set("spark.reducer.maxSizeInFlight", "");

2、解决JVM GC导致的shuffle文件拉取失败

  2.1 问题描述

    下一个stage的task去拉取上一个stage的task的输出文件时,如果正好上一个stage正处在full gc的情况下(所有线程后停止运行),它们之间是通过netty进行通信的,就会出现很长时间拉取不到数据,此时就会报shuffle file not found的错误;但是下一个stage又重新提交task就不会出现问题了。

  2.2 如何解决

    调节最大尝试拉取次数:spark.shuffle.io.maxRetries 默认为3次

    调节每次拉取最大的等待时长:spark.shuffle.io.retryWait 默认为5秒

//调节拉取文件的最大尝试次数(默认3次)
conf.set("spark.shuffle.io.maxRetries", ""); //调节每次拉取数据时最大等待时长(默认为5s)
conf.set("spark.shuffle.io.retryWait", "5s");

3、yarn队列资源不足导致application直接失败

  3.1 问题描述

    如果yarn上的spark作业已经消耗了一部分资源,如果现在再提交一个spark作业,可能会出现以下两个情况:第一、发现yarn资源不足,直接打印fail的log,直接就失败;第二、发现yarn资源不足,该作业就一直处于等待状态,等待分配资源执行。

  3.2 如何解决

    如果发生了上面的第一种问题,可以通过以下方式解决

    方法一:限制同一时间内只有一个spark作业提交到yarn上,确保spark作业的资源是充足的(调节同一时间内每个spark能充分使用yarn的最大资源)。

    方法二:将长时间的spark作业和短时间的spark作业分别提交到不同的队列里(通过线程池的方式实现)。

4、序列化导致的错误

  4.1 问题描述

    如果日志信息出现了Serializable、Serialize等错误信息

  4.2 如何解决

    4.2.1 如果算子函数中使用到外部的自定义的变量,自定义类型需要实行Serializable接口

    4.2.2 如果RDD中使用到自定义的数据类型,自定义类型需要实行Serializable接口

    4.2.3 以上两种情况的类型,不能使用第三方提供的没有实现Serializable接口的类型

5、算子函数返回NULL导致的错误

  5.1 问题描述

    有些算子函数需要有返回值,但是有些数据,就是不想返回任何数据,此时如果返回NULL,可能会导致错误。

  5.2 如何解决

    先返回一个固定的值,之后进行过滤掉指定的数据即可。

6、yarn-cluster模式的JVM内存溢出无法执行的问题

  5.1 问题描述

    有些spark作业,在yarn-client模式下是可以运行的,但在yarn-cluster模式下,会报出JVM的PermGen(永久代)的内存溢出,OOM.

    出现以上原因是:yarn-client模式下,driver运行在本地机器上,spark使用的JVM的PermGen的配置,是本地的默认配置128M;

          但在yarn-cluster模式下,driver运行在集群的某个节点上,spark使用的JVM的PermGen是没有经过默认配置的,默认是82M,故有时会出现PermGen Out of Memory error log.

  5.2 如何处理

    在spark-submit脚本中设置PermGen

    --conf spark.driver.extraJavaOptions="-XX:PermSize=128M -XX:MaxPermSize=256M"(最小128M,最大256M)

    如果使用spark sql,sql中使用大量的or语句,可能会报出jvm stack overflow,jvm栈内存溢出,此时可以把复杂的sql简化为多个简单的sql进行处理即可。

7、checkpoint的使用

  7.1 checkpoint的作用

    默认持久化的Rdd会保存到内存或磁盘中,下次使用该Rdd时直接冲缓存中获取,不需要重新计算;如果内存或者磁盘中文件丢失,再次使用该Rdd时需要重新进行。

    如果将持久化的Rdd进行checkpoint处理,会把内存写入到hdfs文件系统中,此时如果再次使用持久化的Rdd,但文件丢失后,会从hdfs中获取Rdd并重新进行缓存。

  7.2 如何使用

    首先设置checkpoint目录

//设置checkpoint目录
javaSparkContext.checkpointFile("hdfs://hadoop-senior.ibeifeng.com:8020/user/yanglin/spark/checkpoint/UserVisitSessionAnalyzeSpark");

    将缓存后的Rdd进行checkpoint处理

//将缓存后的Rdd进行checkpoint
sessionRowPairRdd.checkpoint();

    

spark性能调优05-troubleshooting处理的更多相关文章

  1. Spark性能调优之代码方面的优化

    Spark性能调优之代码方面的优化 1.避免创建重复的RDD     对性能没有问题,但会造成代码混乱   2.尽可能复用同一个RDD,减少产生RDD的个数   3.对多次使用的RDD进行持久化(ca ...

  2. [Spark性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析

    本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...

  3. Spark性能调优之合理设置并行度

    Spark性能调优之合理设置并行度 1.Spark的并行度指的是什么?     spark作业中,各个stage的task的数量,也就代表了spark作业在各个阶段stage的并行度!     当分配 ...

  4. Spark性能调优之资源分配

    Spark性能调优之资源分配    性能优化王道就是给更多资源!机器更多了,CPU更多了,内存更多了,性能和速度上的提升,是显而易见的.基本上,在一定范围之内,增加资源与性能的提升,是成正比的:写完了 ...

  5. Spark性能调优之Shuffle调优

    Spark性能调优之Shuffle调优    • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存. ...

  6. Spark性能调优之解决数据倾斜

    Spark性能调优之解决数据倾斜 数据倾斜七种解决方案 shuffle的过程最容易引起数据倾斜 1.使用Hive ETL预处理数据    • 方案适用场景:如果导致数据倾斜的是Hive表.如果该Hiv ...

  7. Spark性能调优之JVM调优

    Spark性能调优之JVM调优 通过一张图让你明白以下四个问题                1.JVM GC机制,堆内存的组成                2.Spark的调优为什么会和JVM的调 ...

  8. Spark性能调优

    Spark性能优化指南——基础篇 https://tech.meituan.com/spark-tuning-basic.html Spark性能优化指南——高级篇 https://tech.meit ...

  9. spark性能调优 数据倾斜 内存不足 oom解决办法

    [重要] Spark性能调优——扩展篇 : http://blog.csdn.net/zdy0_2004/article/details/51705043

  10. spark 性能调优(一) 性能调优的本质、spark资源使用原理、调优要点分析

    转载:http://www.cnblogs.com/jcchoiling/p/6440709.html 一.大数据性能调优的本质 编程的时候发现一个惊人的规律,软件是不存在的!所有编程高手级别的人无论 ...

随机推荐

  1. AttributeError: module 'requests' has no attribute 'get'的错误疑惑

    我发现文件直接用requests.get(url)会提示我AttributeError: module 'requests' has no attribute 'get' 我把问题百度了一下,解决方法 ...

  2. 还抱着 Java 8 不放,也是醉了!

    作者 | Trisha Gee原文:https://dzone.com/articles/beyond-java-8译者 | 弯月 责编 | 屠敏出品 | CSDN(ID:CSDNnews) 不说 A ...

  3. redis集群搭建(简单简单)一台机器多redis

      redis集群搭建 在开始redis集群搭建之前,我们先简单回顾一下redis单机版的搭建过程 下载redis压缩包,然后解压压缩文件: 进入到解压缩后的redis文件目录(此时可以看到Makef ...

  4. python基础----斐波那契数列

    python实现斐波那契数列的三种方法 """ 斐波那契数列 0,1,1,2,3,5,8,13,21,... """ # 方法一:while ...

  5. js实现倒计时+div下落

    全部由js动态生成结点,body内无内容 <style> #count{ position: absolute; text-align: center; width: 240px; hei ...

  6. 三、Json方式函数

    一.Json方式函数 // 4. 查看对象信息 console.dir(obj) =>可以显示一个对象所有的属性和方法. var info = { blog: "http://cllg ...

  7. Facade——外观模式

    Facade外观模式,也是比较常用的一种模式,基本上所有软件系统中都会用到. GOF 在<设计模式>一书中给出如下定义:为子系统中的一组接口提供一个一致的界面, Facade 模式定义了一 ...

  8. pip 批量安装包

    1 python3环境已经安装好,且也配置到环境变量:这种方式是在线安装 注意不要将   pip list  也安装了了,不然可能会覆盖自己已安装的这个包 首先,在已配置好的一台机器上,将需要的包导出 ...

  9. 进程调试--进程启动VS自动附加

    程序启动VS自动附加到进程调试 1. 打开注册表regedit 2. HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\currentversion\i ...

  10. HashMap常见面试题

    1.HashMap底层是通过什么来实现的? 在JDK1.7中是通过数组+链表来实现的: 在JDK1.8中是通过数组+链表+红黑树来实现的 2.HashMap在JDK1.8中为什么使用红黑树? 为了弥补 ...