题目链接

(luogu) https://www.luogu.org/problem/P4091

(bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4555

题解

终于不是神仙题了啊。。。

首先\(O(n\log n)\)的FFT做法非常明显,直接用容斥展开,这里不再赘述了。发现最后就是要求一个\(\sum^{n}_{k=0}\sum^{n}_{j=k}(-1)^{j-k}{j\choose k}2^j(\sum^{n}_{i=0}k^i)\).

注意容斥的公式在上指标小于下指标时依然成立,此时其给出的值恒为\(0\).

然后去膜了一波大佬的线性做法:

依然是要求那个式子,但是那个式子可以不用卷积算。

我们发现,假设某序列\(A\)的生成函数为\(A(x)=\sum^{n}_{i=0}a_ix^i\), 那么\(\sum^{n}_{j=0}\sum^n_{i=j}a_i{i\choose j}q^{i-j}x^j=\sum^{n}_{j=0}a_j(x+q)^j=A(x+q)\).

所以要求的就相当于令\(A_i=2^i,q=-1\), 那么\(A(x)=\frac{(2x)^{n+1}}{2x-1}, A(x-1)=\frac{(2x-2)^{n+1}}{2x-3}\), 这个东西直接把上面的二项式展开然后除以一次式\(O(n)\)解决。

这样求出了多项式的每一项,再和\(\sum^{n}_{i=0}k^i\)乘起来求和即可。

对于快速幂,可以用线性筛先求出所有质数的\((n+1)\)次幂,然后按积性函数乘起来,假设质数密度是\(O(\frac{1}{\log n})\)那么复杂度就是\(O(\frac{n}{\log n}\times \log n)=O(n)\).

现在思考一个问题: 这个做法先把二项式展开之后的组合数合了起来,又把合起来之后的式子二项式展开了,那么实际上应该相当于啥也没干,凭什么就优化复杂度了呢?

其实是因为,原来的二项式合并有\(n\)项(做了\(n\)次合并),合并完了之后它变成了一个非常好看的等比数列求和的形式,那么可以直接表示成\((n+1)\)次减\(1\)除以\(1\)次\(-1\), 那么再做二项式展开就只要做一次了,于是复杂度成功降了下来!

真神奇。

代码

由于我懒得写线性筛所以用了快速幂复杂度依然是\(O(n\log n)\).

但是线性做法的思想还是非常值得借鉴的。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std; inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
} const int N = 1e5+1;
const int P = 998244353;
const llong INV2 = 499122177;
llong fact[N+3],finv[N+3];
int n; llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}
llong comb(llong x,llong y) {return x<0||y<0||x<y ? 0ll : fact[x]*finv[y]%P*finv[x-y]%P;} llong a[N+3];
llong aa[N+3];
llong b[N+3]; int main()
{
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
scanf("%d",&n);
for(int i=0; i<=n+1; i++)
{
a[i] = quickpow(2ll,n+1)*comb(n+1,i);
if((n+1-i)&1) {a[i] = P-a[i];}
}
a[0]--;
for(int i=n; i>=0; i--)
{
aa[i] = a[i+1]*INV2%P;
a[i] = (a[i]+3ll*aa[i])%P;
}
b[0] = 1ll; b[1] = n+1;
for(int i=2; i<=n; i++)
{
b[i] = (quickpow(i,n+1)-1)*mulinv(i-1)%P;
}
llong ans = 0ll;
for(int i=0; i<=n; i++) {ans = (ans+aa[i]*b[i])%P;}
printf("%lld\n",ans);
return 0;
}

BZOJ 4555 Luogu P4091 [HEOI2016/TJOI2016]求和 (第二类斯特林数)的更多相关文章

  1. [HEOI2016/TJOI2016]求和(第二类斯特林数)

    题目 [HEOI2016/TJOI2016]求和 关于斯特林数与反演的更多姿势\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ Ans&=\sum\l ...

  2. [HEOI2016/TJOI2016]求和——第二类斯特林数

    给你斯特林数就换成通项公式,给你k次方就换成斯特林数 考虑换成通项公式之后,组合数没有什么好的处理方法 直接拆开,消一消阶乘 然后就发现了(j-k)和k! 往NTT方向靠拢 然后大功告成 其实只要想到 ...

  3. 【BZOJ4555】【TJOI2016】【HEOI2016】求和 第二类斯特林数 NTT

    题目大意 求\(f(n)=\sum_{i=0}^n\sum_{j=0}^i2^j\times j!\times S(i,j)\\\) 对\(998244353\)取模 \(n\leq 100000\) ...

  4. bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...

  5. BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)

    题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...

  6. BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT

    定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...

  7. BZOJ 2159: Crash 的文明世界(组合数学+第二类斯特林数+树形dp)

    传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\) ...

  8. 【题解】Luogu P4091 [HEOI2016/TJOI2016]求和

    原题传送门 \[\begin{aligned} a n s &=\sum_{i=0}^{n} \sum_{j=0}^{i}\left\{\begin{array}{c}{i} \\ {j}\e ...

  9. luogu P4091 [HEOI2016/TJOI2016]求和

    传送门 这一类题都要考虑推式子 首先,原式为\[f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i}S(i,j)*2^j*j!\] 可以看成\[f(n)=\sum_{j=0}^{n}2^ ...

随机推荐

  1. 2018.07.17【省赛模拟】模拟B组 比赛总结

    题目 [GDKOI2003]最大公共子串 [题目描述] 从一个给定的串中删去(不一定连续地删去)0个或0个以上的字符,剩下的字符按原来的顺序组成的串是该串的字串.例如:"", &q ...

  2. HTTP协议 django下载安装 url路由分发

    今日内容 HTTP协议 MVC和MTV框架模式 django下载安装 django的url路由分发 HTTP协议 http协议 请求信息格式 GET / HTTP/1.1 请求行 Host: 127. ...

  3. vscode中eslint插件的配置-prettier

    用vue-cli构建vue项目,会有个eslint代码检测的安装 可vscode自带代码格式化是prettier格式(右键有格式化文件或alt+shift+f) 这时候要在vscode上装一个esli ...

  4. php重定向的三种方法分享

    一.用HTTP头信息  也就是用PHP的HEADER函数.PHP里的HEADER函数的作用就是向浏览器发出由HTTP协议规定的本来应该通过WEB服务器的控制指令,例如: 声明返回信息的类型(" ...

  5. 淘宝flexible.js的使用

    首先大家最关注的怎么使用,原理不原理是后面的事 比如设计稿量来的宽度是100px 那么我们布局的时候,就这么写{width:1.3333rem},1.3333rem是由100/75算出来的,以此类推2 ...

  6. Django框架——基础之路由系统(urls.py)11111111

    1.URL路由系统前言 URL是Web服务的入口,用户通过浏览器发送过来的任何请求,都是发送到一个指定的URL地址,然后被响应. 在Django项目中编写路由,就是向外暴露我们接收哪些URL的请求,除 ...

  7. Python package钓鱼

    Python package钓鱼   一.概述 在收录该文之后,知道创宇404安全实验室对该文中所提到的攻击方式进行跟进.整理分析原作者公布的钓鱼数据.值得一提的是,在跟进的过程中,我们发现了新的钓鱼 ...

  8. 使用TensorFlow玩GTA5

    小白学TensorFlow(一) tensorflow安装 在安装之前,您必须选择以下类型的TensorFlow之一来安装: TensorFlow仅支持CPU支​​持.如果您的系统没有NVIDIA®G ...

  9. deep_learning_Function_matpotlib_scatter()函数

    plt.scatter()函数用于生成一个scatter散点图. matplotlib.pyplot.scatter(x, y, s=20, c='b', marker='o', cmap=None, ...

  10. Intellij Idea如何导入spring源码

    一.读源码的目的 我们在开发过程中往往会运用一些市场上一些主流的框架,例如spring,hibernate ,strust 和mybaities 等. 我们往往可能有时候只知道运用,却不知道这些框架内 ...