POJ 1984 Navigation Nightmare 带全并查集
Description
F1 --- (13) ---- F6 --- (9) ----- F3
| |
(3) |
| (7)
F4 --- (20) -------- F2 |
| |
(2) F5
|
F7
Being an ASCII diagram, it is not precisely to scale, of course.
Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path
(sequence of roads) links every pair of farms.
FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:
There is a road of length 10 running north from Farm #23 to Farm #17
There is a road of length 7 running east from Farm #1 to Farm #17
...
As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationally-challenged neighbor, farmer Bob:
What is the Manhattan distance between farms #1 and #23?
FJ answers Bob, when he can (sometimes he doesn't yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms.
The Manhattan distance between two points (x1,y1) and (x2,y2) is just |x1-x2| + |y1-y2| (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).
When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "-1".
Input
* Line 1: Two space-separated integers: N and M * Lines 2..M+1: Each line contains four space-separated entities, F1,
F2, L, and D that describe a road. F1 and F2 are numbers of
two farms connected by a road, L is its length, and D is a
character that is either 'N', 'E', 'S', or 'W' giving the
direction of the road from F1 to F2. * Line M+2: A single integer, K (1 <= K <= 10,000), the number of FB's
queries * Lines M+3..M+K+2: Each line corresponds to a query from Farmer Bob
and contains three space-separated integers: F1, F2, and I. F1
and F2 are numbers of the two farms in the query and I is the
index (1 <= I <= M) in the data after which Bob asks the
query. Data index 1 is on line 2 of the input data, and so on.
Output
* Lines 1..K: One integer per line, the response to each of Bob's
queries. Each line should contain either a distance
measurement or -1, if it is impossible to determine the
appropriate distance.
Sample Input
7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6 1
1 4 3
2 6 6
Sample Output
13
-1
10
Hint
At time 3, the distance between 1 and 4 is still unknown.
At the end, location 6 is 3 units west and 7 north of 2, so the distance is 10.
题意:
给你一个n点的方位图m条边
q个询问
每次询问你 a,b,time a和b在连接第time条边的时候 的曼哈顿距离
题解:
带全并查集
保留每个点与根节点 的横纵坐标距离
find的时候 记得 更新
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 4e4+, M = 4e4+, mod = 1e9+, inf = 1e9+;
typedef long long ll; int n,m,fa[N],a[N],b[N],c[N],xc[N],yc[N];
char ch[N][];
int q;
int finds(int x) {
if(fa[x] == x) return x;
int xx = finds(fa[x]);
int t = fa[x];
xc[x] += xc[t];
yc[x] += yc[t];
fa[x] = xx;
return xx;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++) scanf("%d%d%d%s",&a[i],&b[i],&c[i],ch[i]);
for(int i=;i<=n;i++) fa[i] = i;
scanf("%d",&q);
int l = ,r,f1,f2;
while(q--) {
scanf("%d%d%d",&f1,&f2,&r);
while(l<=r) {
int fx = finds(a[l]);
int fy = finds(b[l]);
if(fx!=fy) {
fa[fx] = fy;
xc[fx] = -xc[a[l]] , yc[fx] = -yc[a[l]];
if(ch[l][] == 'E') xc[fx] += (xc[b[l]] - c[l]),yc[fx] += yc[b[l]];
else if(ch[l][] == 'W') xc[fx] += (xc[b[l]] + c[l]),yc[fx] += yc[b[l]];
else if(ch[l][] == 'N') yc[fx] += (yc[b[l]] - c[l]), xc[fx] += xc[b[l]];
else yc[fx] += (yc[b[l]] + c[l]), xc[fx] += xc[b[l]];
}//cout<<1<<endl;
l++;
}
int fx = finds(f1);
int fy = finds(f2);
if(fx != fy) puts("-1");
else {
// if(r == 6) cout<<xc[f1]<<" "<<yc[f1]<<endl,cout<<xc[f2]<<" "<<yc[f2]<<endl;
printf("%d\n",abs(xc[f1]-xc[f2]) + abs(yc[f1]-yc[f2]));
}
}
}
POJ 1984 Navigation Nightmare 带全并查集的更多相关文章
- POJ 1984 - Navigation Nightmare - [带权并查集]
题目链接:http://poj.org/problem?id=1984 Time Limit: 2000MS Memory Limit: 30000K Case Time Limit: 1000MS ...
- BZOJ 3362 Navigation Nightmare 带权并查集
题目大意:给定一些点之间的位置关系,求两个点之间的曼哈顿距离 此题土豪题.只是POJ也有一道相同的题,能够刷一下 别被题目坑到了,这题不强制在线.把询问离线处理就可以 然后就是带权并查集的问题了.. ...
- POJ 1984 Navigation Nightmare 【经典带权并查集】
任意门:http://poj.org/problem?id=1984 Navigation Nightmare Time Limit: 2000MS Memory Limit: 30000K To ...
- POJ 1984 Navigation Nightmare(二维带权并查集)
题目链接:http://poj.org/problem?id=1984 题目大意:有n个点,在平面上位于坐标点上,给出m关系F1 F2 L D ,表示点F1往D方向走L距离到点F2,然后给出一系 ...
- POJ-1984-Navigation Nightmare+带权并查集(中级
传送门:Navigation Nightmare 参考:1:https://www.cnblogs.com/huangfeihome/archive/2012/09/07/2675123.html 参 ...
- POJ 1773 Parity game 带权并查集
分析:带权并查集,就是维护一堆关系 然后就是带权并查集的三步 1:首先确定权值数组,sum[i]代表父节点到子节点之间的1的个数(当然路径压缩后代表到根节点的个数) 1代表是奇数个,0代表偶数个 2: ...
- POJ 1182 食物链 【带权并查集】
<题目链接> 题目大意: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我 ...
- POJ 1182 食物链 (带权并查集)
食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 78551 Accepted: 23406 Description ...
- POJ 1182 食物链 【带权并查集/补集法】
动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说 ...
随机推荐
- [转载]Python-第三方库requests详解
Requests 是用Python语言编写,基于 urllib,采用 Apache2 Licensed 开源协议的 HTTP 库.它比 urllib 更加方便,可以节约我们大量的工作,完全满足 HTT ...
- Js注释
注释 介绍 作用 合作分享:方便他人阅读,便于分享 沉淀总结:容易忘记代码,自己总结沉淀 形式 1.// 双斜杠 2./**/斜杠星号 常用标签 标签 描述 @module 标明当前文件模块,在这个文 ...
- Java for LeetCode 223 Rectangle Area
Find the total area covered by two rectilinear rectangles in a 2D plane. Each rectangle is defined b ...
- Win8环境WPF打开和关闭软键盘
代码如下: public class KeyBoardHelper { #region 键盘控制 /// <summary> /// 显示键盘 /// </summary> p ...
- SVN客户端以及使用 for windows
1.首先我们需要下载 "svn小乌龟"后,进行安装.比如我下载如下的: 安装完成后,比如在我的项目在qiandaun1中,我右键就可以看到如下: 说明snv已经安装成功了! 2:c ...
- MFC Initinstance中DoModal()返回-1
新建一个基于对话框的MFC应用程序,在App的Initinstance中调用对话框DoModal()来显示对话框,这是框架的内容,应用程序框架生成的全部是正常的. 当把我对话框的资源文件提取到一个资源 ...
- javascript 操作cookie
function setCookie(c_name, value, expiredays) { var exdate = new Date(); exdate.setDate(exdate.getDa ...
- 【leetcode】Validate Binary Search Tree(middle)
Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...
- 【leetcode】Single Number II (medium) ★ 自己没做出来....
Given an array of integers, every element appears three times except for one. Find that single one. ...
- 【C语言】文件
fopen fseek fprintf fclose 先用这几个函数