Navigation Nightmare
 

Description

Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series of M (1 <= M < 40,000) vertical and horizontal roads each of varying lengths (1 <= length <= 1000) connect the farms. A map of these farms might look something like the illustration below in which farms are labeled F1..F7 for clarity and lengths between connected farms are shown as (n):

           F1 --- (13) ---- F6 --- (9) ----- F3

| |

(3) |

| (7)

F4 --- (20) -------- F2 |

| |

(2) F5

|

F7

Being an ASCII diagram, it is not precisely to scale, of course.

Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path 
(sequence of roads) links every pair of farms.

FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:

There is a road of length 10 running north from Farm #23 to Farm #17 
There is a road of length 7 running east from Farm #1 to Farm #17 
...

As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationally-challenged neighbor, farmer Bob:

What is the Manhattan distance between farms #1 and #23?

FJ answers Bob, when he can (sometimes he doesn't yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms. 
The Manhattan distance between two points (x1,y1) and (x2,y2) is just |x1-x2| + |y1-y2| (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).

When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "-1".

 

Input

* Line 1: Two space-separated integers: N and M

* Lines 2..M+1: Each line contains four space-separated entities, F1,

F2, L, and D that describe a road. F1 and F2 are numbers of

two farms connected by a road, L is its length, and D is a

character that is either 'N', 'E', 'S', or 'W' giving the

direction of the road from F1 to F2. * Line M+2: A single integer, K (1 <= K <= 10,000), the number of FB's

queries * Lines M+3..M+K+2: Each line corresponds to a query from Farmer Bob

and contains three space-separated integers: F1, F2, and I. F1

and F2 are numbers of the two farms in the query and I is the

index (1 <= I <= M) in the data after which Bob asks the

query. Data index 1 is on line 2 of the input data, and so on.

Output

* Lines 1..K: One integer per line, the response to each of Bob's

queries. Each line should contain either a distance

measurement or -1, if it is impossible to determine the

appropriate distance.

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6 1
1 4 3
2 6 6

Sample Output

13
-1
10

Hint

At time 1, FJ knows the distance between 1 and 6 is 13. 
At time 3, the distance between 1 and 4 is still unknown. 
At the end, location 6 is 3 units west and 7 north of 2, so the distance is 10. 

题意:

  给你一个n点的方位图m条边

  q个询问

  每次询问你 a,b,time a和b在连接第time条边的时候 的曼哈顿距离

题解:

  带全并查集

  保留每个点与根节点 的横纵坐标距离

  find的时候 记得 更新

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 4e4+, M = 4e4+, mod = 1e9+, inf = 1e9+;
typedef long long ll; int n,m,fa[N],a[N],b[N],c[N],xc[N],yc[N];
char ch[N][];
int q;
int finds(int x) {
if(fa[x] == x) return x;
int xx = finds(fa[x]);
int t = fa[x];
xc[x] += xc[t];
yc[x] += yc[t];
fa[x] = xx;
return xx;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++) scanf("%d%d%d%s",&a[i],&b[i],&c[i],ch[i]);
for(int i=;i<=n;i++) fa[i] = i;
scanf("%d",&q);
int l = ,r,f1,f2;
while(q--) {
scanf("%d%d%d",&f1,&f2,&r);
while(l<=r) {
int fx = finds(a[l]);
int fy = finds(b[l]);
if(fx!=fy) {
fa[fx] = fy;
xc[fx] = -xc[a[l]] , yc[fx] = -yc[a[l]];
if(ch[l][] == 'E') xc[fx] += (xc[b[l]] - c[l]),yc[fx] += yc[b[l]];
else if(ch[l][] == 'W') xc[fx] += (xc[b[l]] + c[l]),yc[fx] += yc[b[l]];
else if(ch[l][] == 'N') yc[fx] += (yc[b[l]] - c[l]), xc[fx] += xc[b[l]];
else yc[fx] += (yc[b[l]] + c[l]), xc[fx] += xc[b[l]];
}//cout<<1<<endl;
l++;
}
int fx = finds(f1);
int fy = finds(f2);
if(fx != fy) puts("-1");
else {
// if(r == 6) cout<<xc[f1]<<" "<<yc[f1]<<endl,cout<<xc[f2]<<" "<<yc[f2]<<endl;
printf("%d\n",abs(xc[f1]-xc[f2]) + abs(yc[f1]-yc[f2]));
}
}
}

POJ 1984 Navigation Nightmare 带全并查集的更多相关文章

  1. POJ 1984 - Navigation Nightmare - [带权并查集]

    题目链接:http://poj.org/problem?id=1984 Time Limit: 2000MS Memory Limit: 30000K Case Time Limit: 1000MS ...

  2. BZOJ 3362 Navigation Nightmare 带权并查集

    题目大意:给定一些点之间的位置关系,求两个点之间的曼哈顿距离 此题土豪题.只是POJ也有一道相同的题,能够刷一下 别被题目坑到了,这题不强制在线.把询问离线处理就可以 然后就是带权并查集的问题了.. ...

  3. POJ 1984 Navigation Nightmare 【经典带权并查集】

    任意门:http://poj.org/problem?id=1984 Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K To ...

  4. POJ 1984 Navigation Nightmare(二维带权并查集)

    题目链接:http://poj.org/problem?id=1984 题目大意:有n个点,在平面上位于坐标点上,给出m关系F1  F2  L  D ,表示点F1往D方向走L距离到点F2,然后给出一系 ...

  5. POJ-1984-Navigation Nightmare+带权并查集(中级

    传送门:Navigation Nightmare 参考:1:https://www.cnblogs.com/huangfeihome/archive/2012/09/07/2675123.html 参 ...

  6. POJ 1773 Parity game 带权并查集

    分析:带权并查集,就是维护一堆关系 然后就是带权并查集的三步 1:首先确定权值数组,sum[i]代表父节点到子节点之间的1的个数(当然路径压缩后代表到根节点的个数) 1代表是奇数个,0代表偶数个 2: ...

  7. POJ 1182 食物链 【带权并查集】

    <题目链接> 题目大意: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我 ...

  8. POJ 1182 食物链 (带权并查集)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 78551   Accepted: 23406 Description ...

  9. POJ 1182 食物链 【带权并查集/补集法】

    动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说 ...

随机推荐

  1. spring + myBatis 常见错误:注解事务不回滚

    最近项目在用springMVC+spring+myBatis框架,在配置事务的时候发现一个事务不能回滚的问题. 刚开始配置如下:springMVC.xml配置内容: spring.xml配置内容 从上 ...

  2. ios swift 2 新的OptionSetType使用方法

    http://www.rockhoppertech.com/blog/swift-2-optionsettype/?utm_source=tuicool 主要使用方法如下 components([NS ...

  3. android上的图片占用内存问题

    近日正在把ios程序移植到android上,以前没做过android的程序,于是,想当然地把ios的图片资源放到了android工程的drawable文件夹下,这些图片都是png. 程序界面也很正常. ...

  4. ThinkPHP增加数据库字段后插入数据为空的解决办法

    今天用ThinkPHP做了一个简单的商品发布系统,数据库本来只有四个字段id,name,url,image.id是主键,name是商品名称,url是商品链接,image是商品图片,做的差不多了,发现还 ...

  5. ACM/ICPC 之 欧拉回路两道(POJ1300-POJ1386)

    两道有关欧拉回路的例题 POJ1300-Door Man //判定是否存在从某点到0点的欧拉回路 //Time:0Ms Memory:116K #include<iostream> #in ...

  6. Slave SQL: Error 'Incorrect string value ... Error_code: 1366

    背景: 主从环境一样,字符集是utf8. Slave复制报错,平时复制都正常也没有出现过问题,今天突然报错: :: :: :: :: Error_code: :: perror 1366 MySQL ...

  7. java入门 第一季4

    1.数组 1).声明数组 数据类型[]数组名; 数据类型 数组名[]; 2).分配空间 数组名=new 数据类型[数组长度]: 3).赋值 score[0]=98: 直接创建一个长度为4的数组 int ...

  8. SAP 工厂日生产计划待排维护

    *&---------------------------------------------------------------------* *& Report  ZPPR0024 ...

  9. JS match() 方法 使用

    javascript中的match函数是使用正则表达式对字符串进行查找,并将查找的结果作为数组返回,在实际开发中非常的有用,使用方法如下: stringObj.match(rgExp) 其中strin ...

  10. Aix下如何运行Java程序

    windows下:java -classpath %classpath%;bb.jar;aa.jar [main class]main class是打包的主类,已经指定了主类,可以不输入.另外,IBM ...