首先,块的大小确定的话,可以发现方案最多只有1种

然后就可以O(nsqrt(n))搞,不过会TLE

接着我们又发现,一个节点可以作一个块的根,当且仅当该节点的size能被块的大小整除

然后就可以O(nlogn)搞了

详见代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define N 1000006
#define M 2000006 using namespace std;
inline int read(){
int ret=0;char ch=getchar();
while (ch<'0' || ch>'9') ch=getchar();
while ('0'<=ch && ch<='9'){
ret=ret*10-48+ch;
ch=getchar();
}
return ret;
} struct edge{
int adj,next;
edge(){}
edge(int _adj,int _next):adj(_adj),next(_next){}
} e[M];
int n,g[N],m;
void AddEdge(int u,int v){
e[++m]=edge(v,g[u]);g[u]=m;
e[++m]=edge(u,g[v]);g[v]=m;
} int cnt[N];
int size[N];
bool vis[N];
void dfs(int u){
vis[u]=1;size[u]=1;
for (int i=g[u];i;i=e[i].next){
int v=e[i].adj;
if (vis[v]) continue;
dfs(v);
size[u]+=size[v];
}
++cnt[size[u]];
} int main(){
n=read();
memset(g,0,sizeof(g));m=1;
for (int i=1;i<n;++i) AddEdge(read(),read());
memset(cnt,0,sizeof(cnt));
memset(vis,0,sizeof(vis));
dfs(1);
int ans=0;
for (int i=1;i<=n;++i){
for (int j=2;i*j<=n;++j)
cnt[i]+=cnt[i*j];
if (i*cnt[i]==n) ++ans;
}
printf("%d\n",ans);
return 0;
}

  

  

bzoj4401: 块的计数的更多相关文章

  1. BZOJ4401:块的计数(乱搞)

    Description 小Y最近从同学那里听说了一个十分牛B的高级数据结构——块状树.听说这种数据结构能在sqrt(N)的时间内维护树上的各种信息,十分的高效.当然,无聊的小Y对这种事情毫无兴趣,只是 ...

  2. BZOJ4401: 块的计数 思维题

    Description 小Y最近从同学那里听说了一个十分牛B的高级数据结构——块状树.听说这种数据结构能在sqrt(N)的时间内维护树上的各种信息,十分的高效.当然,无聊的小Y对这种事情毫无兴趣,只是 ...

  3. 【BZOJ4401/3004】块的计数/吊灯 乱搞

    [BZOJ4401]块的计数 Description 小Y最近从同学那里听说了一个十分牛B的高级数据结构——块状树.听说这种数据结构能在sqrt(N)的时间内维护树上的各种信息,十分的高效.当然,无聊 ...

  4. bzoj 4401: 块的计数

    4401: 块的计数 Description 小Y最近从同学那里听说了一个十分牛B的高级数据结构——块状树.听说这种数据结构能在sqrt(N)的时间内维护树上的各种信息,十分的高效.当然,无聊的小Y对 ...

  5. bzoj 4401 块的计数 思想+模拟+贪心

    块的计数 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 455  Solved: 261[Submit][Status][Discuss] Descr ...

  6. 【bzoj4401】块的计数 结论题

    题目描述 给出一棵n个点的树,求有多少个si使得整棵树可以分为n/si个连通块. 输入 第一行一个正整数N,表示这棵树的结点总数,接下来N-1行,每行两个数字X,Y表示编号为X的结点与编号为Y的结点相 ...

  7. 【bzoj4401】块的计数(水dfs)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4401 假设把树划分为x个节点作一块,那么显然只有当x|n的时候才可能存在划分方案,并且这 ...

  8. 【bzoj4401】块的计数

    首先,块的大小确定的话,可以发现方案最多只有1种 然后就可以O(nsqrt(n))搞,不过会TLE 接着我们又发现,一个节点可以作一个块的根,当且仅当该节点的size能被块的大小整除 然后就可以O(n ...

  9. HDU 5441 Travel (并查集+数学+计数)

    题意:给你一个带权的无向图,然后q(q≤5000)次询问,问有多少对城市(城市对(u,v)与(v,u)算不同的城市对,而且u≠v)之间的边的长度不超过d(如果城市u到城市v途经城市w, 那么需要城市u ...

随机推荐

  1. android之android.intent.category.DEFAULT的用途和使用

    1.要弄清楚这个问题,首先需要弄明白什么是implicit(隐藏) intent什么是explicit(明确) intent. Explicit Intent明确的指定了要启动的Acitivity , ...

  2. ef操作类

    基于Hi博客的类库 20160811 using Model; using System; using System.Collections.Generic; using System.Data.En ...

  3. background-size背景缩放

    特别注意:背景图片缩放是相对于背景图片所在容器的宽高而言的,并不是相对背景图片本身的宽高 比如,一个div的宽高是300和200像素,背景图片本身的宽高是100*100的像素,设置div的backgr ...

  4. Docker容器概念讲解

    Docker 是 PaaS 提供商 dotCloud 开源的一个基于 LXC 的高级容器引擎,源代码托管在 Github 上, 基于go语言并遵从Apache2.0协议开源. Docker是通过内核虚 ...

  5. xhprof使用笔记(非原创)

    [作用] xhprof是facebook开源的一个php性能分析工具. [安装] xhprof扩展的安装: wget   http://pecl.php.net/get/xhprof-0.9.2.tg ...

  6. Java核心技术点之内部类

    1. 为什么要使用内部类     内部类就是定义在一个类内部的类,那么为什么要使用内部类呢?主要原因有以下几点:第一,内部类中定义的方法能访问到它所在外部类的私有属性及方法:第二,外部类无法实现对同一 ...

  7. div+css兼容 ie6_ie7_ie8_ie9_ie10和FireFox_Chrome等浏览器方法

    1.div的垂直居中问题 vertical-align:middle; 将行距增加到和整个DIV一样高 line-height:200px; 然后插入文字,就垂直居中了.缺点是要控制内容不要换行   ...

  8. 精通jQuery选择器

    虽然jQuery上手简单,相比于其他库学习起来较为简单,但是要全面掌握,却不轻松.因为它涉及到网页开发的方方面面,提供的方法和内部变化有上千种之多.初学者常常感到,入门很方便,提高很困难.本文的目标是 ...

  9. Beta版本项目展示要求

    项目评审的定在1月5日上午9:00在新主楼D225进行. 在Beta阶段项目评审会上, 每个团队有12分钟展示时间,10分钟问答和机动时间,我们的展示也不需要PPT,大家把要展现的东西写成博客(可以有 ...

  10. 分布式中使用Redis实现Session共享(一)

    上一篇介绍了如何使用nginx+iis部署一个简单的分布式系统,文章结尾留下了几个问题,其中一个是"如何解决多站点下Session共享".这篇文章将会介绍如何使用Redis,下一篇 ...