【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂
1009: [HNOI2008]GT考试
Time Limit: 1 Sec Memory Limit: 162 MB
Submit:
2745 Solved: 1694
[Submit][Status][Discuss]
Description
阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am.
A1和X1可以为
0
Input
第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000
Output
阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.
Sample Input
111
Sample Output
HINT
Source
Solution
这个题非常的好
开始看范围,$10^{9}$显然O(n)都不能做啊,但是又像数位DP,所以肯定要优化,能优化到O(n)以下的只有矩乘快速幂优化DP了
实际上确实和数位DP非常累死,F[i][j]表示位数为i,最后匹配了j位的方案数,这样答案显然为$\sum_{i=1}^{n}F[n][i]$
考虑KMP的next数组,分类讨论一下,搞到矩阵上,然后快速幂一下搞搞
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,p,next[],an; char S[];
struct Matrixnode
{
int da[][];
Matrixnode(){memset(da,,sizeof(da));}
}a;
Matrixnode Mul (Matrixnode A,Matrixnode B)
{
Matrixnode C;
for (int i=; i<m; i++)
for (int j=; j<m; j++)
for (int k=; k<m; k++)
C.da[i][j]=(C.da[i][j]+A.da[i][k]*B.da[k][j])%p;
return C;
}
Matrixnode Pow (Matrixnode A,int x)
{
Matrixnode re;
for (int i=; i<m; i++) re.da[i][i]=;
for (int i=x; i; i>>=,A=Mul(A,A))
if (i&) re=Mul(re,A);
return re;
}
void KMP_prework()
{
for (int j=,i=; i<=m; i++)
{
while (j && S[i]!=S[j+]) j=next[j];
if (S[j+]==S[i]) j++; next[i]=j;
}
for (int i=; i<m; i++)
for (int x,j=; j<; j++)
{
x=i;
while (x && S[x+]-''!=j) x=next[x];
if (j==S[x+]-'') a.da[i][x+]++; else a.da[i][]++;
}
}
int main()
{
scanf("%d%d%d\n",&n,&m,&p); scanf("%s",S+);
KMP_prework();
Matrixnode ans; ans=Pow(a,n);
for (int i=; i<m; i++) an=(an+ans.da[][i])%p;
printf("%d\n",an);
return ;
}
Matrixnode写起来怎么那么长,搞的码风丑死啦
【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂的更多相关文章
- BZOJ 1009 GT考试 (AC自动机 + 矩阵乘法加速dp)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1009 题意: 准考证号为\(n\)位数\(X_1X_2....X_n(0<=X_ ...
- [BZOJ1009] [HNOI2008] GT考试 (KMP & dp & 矩阵乘法)
Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2...Am(0< ...
- 【BZOJ 2323】 2323: [ZJOI2011]细胞 (DP+矩阵乘法+快速幂*)
2323: [ZJOI2011]细胞 Description 2222年,人类在银河系外的某颗星球上发现了生命,并且携带了一个细胞回到了地球.经过反复研究,人类已经完全掌握了这类细胞的发展规律: 这种 ...
- ZOJ - 3216:Compositions (DP&矩阵乘法&快速幂)
We consider problems concerning the number of ways in which a number can be written as a sum. If the ...
- BZOJ-1875 HH去散步 DP+矩阵乘法快速幂
1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...
- [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)
[BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- 【BZOJ】1009: [HNOI2008]GT考试(dp+矩阵乘法+kmp+神题)
http://www.lydsy.com/JudgeOnline/problem.php?id=1009 好神的题orzzzzzzzzzz 首先我是连递推方程都想不出的人...一直想用组合来搞..看来 ...
随机推荐
- CentOS 6.4 下安装vsftpd
概述: vsftpd是Linux下比较著名的FTP服务器,搭建FTP服务器当然首选这个. 本文介绍了在CentOS 6.4下安装vsftpd.配置虚拟用户登录FTP的过程. 正文: 一:安装vsftp ...
- Visual Studio 2013编辑HTML文件无设计视图的解决方案
在Visual Studio 2013中编辑HTML文件,会发现没有设计视图. 解决方法:点击Visual Studio 2013的”工具“菜单,再点击”选项“—>文本编辑器—>文件扩展名 ...
- vtk renderer / rendering 绘制
1.在绘制窗口中绘制出物体(静态的)vtkRenderWindow * w=vtkRenderWindow::New(); w->AddRenderer(r); for(int ...
- 字符串匹配(hash算法)
hash函数对大家来说不陌生吧 ? 而这次我们就用hash函数来实现字符串匹配. 首先我们会想一下二进制数. 对于任意一个二进制数,我们将它化为10进制的数的方法如下(以二进制数1101101为例): ...
- 在线音乐网站【03】Part one 功能实现
今天打算把网站功能的具体实现给总结一下,如果你想了解整个小项目,建议你先看看前面2篇博客. 1.在线音乐网站(1)需求和功能结构 2.在线音乐网站(2)数据库和开发环境 7.网站主要模块实现 a.在线 ...
- ul、li模仿ios的TableView实现城市选择
最近项目一个接着一个,之前说的精创环的项目还没做完,今天说先把那个放一下,先做访客系统,销售会见客户之后可以对客户进行一个跟踪记录,原型图也给了,今日头条的频道自定义页面一样. 如果是在IOS上让我来 ...
- 写一个 nodejs npm应用 - webhere
前言.没图不说话,先上图. What's webhere? 有没有遇到这样的场景:写程序的时候,需要访问一个文件,这个文件 需要是放到一台web服务器上,但是你不是开发的web应用. 所以呢,你不得不 ...
- hystrix-turbine 监控的使用
1. 概述 Demo地址:http://git.oschina.net/zhou666/spring-cloud-7simple/tree/master/cloud-hystrix-turbine ...
- JPEG文件格式介绍
JPEG文件的存储格式有很多种,但最常用的是JFIF格式,即JPEG File Interchange Format.JPEG文件大体可以分为两个部分: (1)标记码:由两个字节构成,其中,前一个字节 ...
- coursera 公开课 文本挖掘和分析(text mining and analytics) week 1 笔记
一.课程简介: text mining and analytics 是一门在coursera上的公开课,由美国伊利诺伊大学香槟分校(UIUC)计算机系教授 chengxiang zhai 讲授,公开课 ...