Hilbert space
Definition
A Hilbert space H is a real or complex inner product space that is also a complete metric space with respect to the distance function induced by the inner product.[2]
To say that H is a complex inner product space means that H is a complex vector space on which there is an inner product
associating a complex number to each pair of elements
x,y of H that satisfies the following properties:
- The inner product of a pair of elements is equal to the complex conjugate of the inner product of the swapped elements:
- The inner product of an element with itself is positive definite:
-
- where the case of equality holds precisely when x = 0.
It follows from properties 1 and 2 that a complex inner product is antilinear in its second argument, meaning that
A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be bilinear: that is, linear in each argument.
The norm is the real-valued function
and the distance d between two points x,y in H is defined in terms of the norm by
That this function is a distance function means (1) that it is symmetric in
x and y, (2) that the distance between x and itself is zero, and otherwise the distance between
x and y must be positive, and (3) that the triangle inequality holds, meaning that the length of one leg of a triangle
xyz cannot exceed the sum of the lengths of the other two legs:
This last property is ultimately a consequence of the more fundamental Cauchy–Schwarz inequality, which asserts
with equality if and only if x and y are linearly dependent.
Relative to a distance function defined in this way, any inner product space is a
metric space, and sometimes is known as a pre-Hilbert space.[4] Any pre-Hilbert
space that is additionally also a complete space is a Hilbert space. Completeness is expressed using a form of the
Cauchy criterion for sequences in H: a pre-Hilbert space H is complete if every
Cauchy sequence converges with respect to this norm to an element in the space. Completeness can be characterized by the following equivalent condition: if a series of vectors

converges absolutely in the sense that
then the series converges in H, in the sense that the partial sums converge to an element of
H.
As a complete normed space, Hilbert spaces are by definition also Banach spaces. As such they are topological vector spaces, in which topological notions like the openness and closedness of subsets are well-defined. Of special importance is the notion of a closed
linear subspace of a Hilbert space that, with the inner product induced by restriction, is also complete (being a closed set in a complete metric space) and therefore a Hilbert space in its own right.
摘自:https://en.wikipedia.org/wiki/Hilbert_space
Hilbert space的更多相关文章
- The space of such functions is known as a reproducing kernel Hilbert space.
Reproducing kernel Hilbert space Mapping the points to a higher dimensional feature space http://www ...
- Cauchy sequence Hilbert space 希尔波特空间的柯西序列
http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space with an inner prod ...
- Reproducing Kernel Hilbert Space (RKHS)
目录 概 主要内容 RKHS-wiki 概 这里对RKHS做一个简单的整理, 之前的理解错得有点离谱了. 主要内容 首先要说明的是, RKHS也是指一种Hilbert空间, 只是其有特殊的性质. Hi ...
- paper 10:支持向量机系列七:Kernel II —— 核方法的一些理论补充,关于 Reproducing Kernel Hilbert Space 和 Representer Theorem 的简介。
在之前我们介绍了如何用 Kernel 方法来将线性 SVM 进行推广以使其能够处理非线性的情况,那里用到的方法就是通过一个非线性映射 ϕ(⋅) 将原始数据进行映射,使得原来的非线性问题在映射之后的空间 ...
- 希尔伯特空间(Hilbert Space)是什么?
希尔伯特空间是老希在解决无穷维线性方程组时提出的概念, 原来的线性代数理论都是基于有限维欧几里得空间的, 无法适用, 这迫使老希去思考无穷维欧几里得空间, 也就是无穷序列空间的性质. 大家知道, 在一 ...
- 希尔伯特空间(Hilbert Space)
欧氏空间 → 线性空间 + 内积 ⇒ 内积空间(元素的长度,元素的夹角和正交) 内积空间 + 完备性 ⇒ 希尔伯特空间 0. 欧几里得空间 欧氏空间是一个特别的度量空间,它使得我们能够对其的拓扑性质, ...
- Kernel methods on spike train space for neuroscience: a tutorial
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- svm机器学习算法中文视频讲解
这个是李政軒Cheng-Hsuan Li的关于机器学习一些算法的中文视频教程:http://www.powercam.cc/chli. 一.KernelMethod(A Chinese Tutoria ...
随机推荐
- 解决qt程序的链接阶段出现 undefined reference 错误
错误的原因是我使用到了 QT Widgets 模块中的东西,但是makefile的链接的参数中没有 widgets.其实官网上提到了这个: http://doc.qt.io/qt-5/qtwidget ...
- [转]MySQL排序原理与案例分析
这篇文章非常好,就把他转过来 前言 排序是数据库中的一个基本功能,MySQL也不例外.用户通过Order by语句即能达到将指定的结果集排序的目的,其实不仅仅是Order by语句,Grou ...
- 转 C# 装箱和拆箱[整理]
1. 装箱和拆箱是一个抽象的概念 2. 装箱是将值类型转换为引用类型 :拆箱是将引用类型转换为值类型 利用装箱和拆箱功能,可通过允许值类型的任何值与Object 类型的 ...
- 03-组合逻辑电路设计之译码器——小梅哥FPGA设计思想与验证方法视频教程配套文档
芯航线——普利斯队长精心奉献 课程目标: 1. 再次熟悉Quartus II工程的建立以及完整的FPGA开发流程 2. 以译码器为例学会简单组合逻辑电路设计 实验平台:无 实验原理: 组合逻辑, ...
- 02-FPGA设计流程介绍——小梅哥FPGA设计思想与验证方法视频教程配套文档
芯航线——普利斯队长精心奉献 课程目标: 1.了解并学会FPGA开发设计的整体流程 2.设计一个二选一选择器并进行功能仿真.时序仿真以及板级验证 实验平台:芯航线FPGA开发板.杜邦线 实验内容: 良 ...
- 32、mybatis
第一章回顾jdbc开发 1)优点:简单易学,上手快,非常灵活构建SQL,效率高 2)缺点:代码繁琐,难以写出高质量的代码(例如:资源的释放,SQL注入安全性等) 开发者既要写业务逻辑,又要写对象的创建 ...
- python字符串加颜色区别
1.有时需要显目的区别不同内容,可以改变显目的内容颜色 print("\033[31;1m你好麽,\033[0m我很好..")print("\033[32;1m你好麽,\ ...
- iOS应用性能调优建议
本文来自iOS Tutorial Team 的 Marcelo Fabri,他是Movile的一名 iOS 程序员.这是他的个人网站:http://www.marcelofabri.com/,你还可以 ...
- implicit operator
class Digit { public Digit(double d) { val = d; } public double val; // ...other members // User-def ...
- Redis redis-cli常用操作
一.安装 二.连接 在bin目录下./redis-cli -p port -a password 授权auth password 查看是否连接成功 ping PONG表示连接成功 三.键值相关命令 k ...








