Hilbert space
Definition
A Hilbert space H is a real or complex inner product space that is also a complete metric space with respect to the distance function induced by the inner product.[2]
To say that H is a complex inner product space means that H is a complex vector space on which there is an inner product
associating a complex number to each pair of elements
x,y of H that satisfies the following properties:
- The inner product of a pair of elements is equal to the complex conjugate of the inner product of the swapped elements:
- The inner product of an element with itself is positive definite:
-
- where the case of equality holds precisely when x = 0.
It follows from properties 1 and 2 that a complex inner product is antilinear in its second argument, meaning that
A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be bilinear: that is, linear in each argument.
The norm is the real-valued function
and the distance d between two points x,y in H is defined in terms of the norm by
That this function is a distance function means (1) that it is symmetric in
x and y, (2) that the distance between x and itself is zero, and otherwise the distance between
x and y must be positive, and (3) that the triangle inequality holds, meaning that the length of one leg of a triangle
xyz cannot exceed the sum of the lengths of the other two legs:

This last property is ultimately a consequence of the more fundamental Cauchy–Schwarz inequality, which asserts
with equality if and only if x and y are linearly dependent.
Relative to a distance function defined in this way, any inner product space is a
metric space, and sometimes is known as a pre-Hilbert space.[4] Any pre-Hilbert
space that is additionally also a complete space is a Hilbert space. Completeness is expressed using a form of the
Cauchy criterion for sequences in H: a pre-Hilbert space H is complete if every
Cauchy sequence converges with respect to this norm to an element in the space. Completeness can be characterized by the following equivalent condition: if a series of vectors
converges absolutely in the sense that
then the series converges in H, in the sense that the partial sums converge to an element of
H.
As a complete normed space, Hilbert spaces are by definition also Banach spaces. As such they are topological vector spaces, in which topological notions like the openness and closedness of subsets are well-defined. Of special importance is the notion of a closed
linear subspace of a Hilbert space that, with the inner product induced by restriction, is also complete (being a closed set in a complete metric space) and therefore a Hilbert space in its own right.
摘自:https://en.wikipedia.org/wiki/Hilbert_space
Hilbert space的更多相关文章
- The space of such functions is known as a reproducing kernel Hilbert space.
Reproducing kernel Hilbert space Mapping the points to a higher dimensional feature space http://www ...
- Cauchy sequence Hilbert space 希尔波特空间的柯西序列
http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space with an inner prod ...
- Reproducing Kernel Hilbert Space (RKHS)
目录 概 主要内容 RKHS-wiki 概 这里对RKHS做一个简单的整理, 之前的理解错得有点离谱了. 主要内容 首先要说明的是, RKHS也是指一种Hilbert空间, 只是其有特殊的性质. Hi ...
- paper 10:支持向量机系列七:Kernel II —— 核方法的一些理论补充,关于 Reproducing Kernel Hilbert Space 和 Representer Theorem 的简介。
在之前我们介绍了如何用 Kernel 方法来将线性 SVM 进行推广以使其能够处理非线性的情况,那里用到的方法就是通过一个非线性映射 ϕ(⋅) 将原始数据进行映射,使得原来的非线性问题在映射之后的空间 ...
- 希尔伯特空间(Hilbert Space)是什么?
希尔伯特空间是老希在解决无穷维线性方程组时提出的概念, 原来的线性代数理论都是基于有限维欧几里得空间的, 无法适用, 这迫使老希去思考无穷维欧几里得空间, 也就是无穷序列空间的性质. 大家知道, 在一 ...
- 希尔伯特空间(Hilbert Space)
欧氏空间 → 线性空间 + 内积 ⇒ 内积空间(元素的长度,元素的夹角和正交) 内积空间 + 完备性 ⇒ 希尔伯特空间 0. 欧几里得空间 欧氏空间是一个特别的度量空间,它使得我们能够对其的拓扑性质, ...
- Kernel methods on spike train space for neuroscience: a tutorial
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- svm机器学习算法中文视频讲解
这个是李政軒Cheng-Hsuan Li的关于机器学习一些算法的中文视频教程:http://www.powercam.cc/chli. 一.KernelMethod(A Chinese Tutoria ...
随机推荐
- LINUX 自动备份脚本文件
首先我在/root/backup 目录下建立一个文件夹, #mkdir /root/backup/mysqlbackup 以后在每天五点钟,就会有一个文件保存在这里. 接着新建文件 #vim /roo ...
- [Ubuntu] Profile error when launching google-chrome
Whenever I launch google-chrome, a window is displayed which contains this message: Your profile cou ...
- LeetCode----202. Happy Number(Java)
package isHappy202; /* * Write an algorithm to determine if a number is "happy". A happy n ...
- WF4.0入门(一)
WF的全称是Windows Workflow Foundation .这是 Microsoft 快速构建基于工作流的应用程序的编程模型.引擎和工具.NET Framework 4 中这个 WF 版本更 ...
- HTML5的数据自动补齐功能
使用datalist元素,HTML5允许使用一组数据来生成自动补齐功能,现在你不需要使用第三方js代码或者类库啦! <input name="frameworks" list ...
- 2015弱校联盟(1) - B. Carries
B. Carries Time Limit: 1000ms Memory Limit: 65536KB frog has n integers a1,a2,-,an, and she wants to ...
- Balanced Lineup(树状数组 POJ3264)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 40493 Accepted: 19035 Cas ...
- 制作web字体:CSS3 @font-face
@font-face是CSS3中的一个模块,他主要是把自己定义的Web字体嵌入到你的网页中,随着@font-face模块的出现,我们在Web的开发中使用字体不怕只能使用Web安全字体,另外@font- ...
- java内部类以及匿名类
内部类 一个类内部定义的类称为内部类. 内部类允许把逻辑相关的类组织在一起,并控制内部代码的可视性. 内部类与外部类的结构层次如下. 顶层类:最外层的类 外部类:内部类所在的类 内部类:类内部定义的类 ...
- JS中的各种类型转换规则(转)
JS中的类型转换非常恶心,大家都懂的,不过该学还是要学. 今天看犀牛书看到了转换规则,总结出来. X转字符串.数字.布尔值 X表示各种类型的值,直接上图: 值 转数字 转字符串 转布尔值 undefi ...