Definition

A Hilbert space H is a real or complex inner product space that is also a complete metric space with respect to the distance function induced by the inner product.[2]
To say that H is a complex inner product space means that H is a complex vector space on which there is an inner product
associating a complex number to each pair of elements
x,y of H that satisfies the following properties:

  • The inner product of a pair of elements is equal to the complex conjugate of the inner product of the swapped elements:
  • The inner product is linear in its first argument.[3] For all complex numbers
    a and b,
where the case of equality holds precisely when x = 0.

It follows from properties 1 and 2 that a complex inner product is antilinear in its second argument, meaning that

A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be bilinear: that is, linear in each argument.

The norm is the real-valued function

and the distance d between two points x,y in H is defined in terms of the norm by

That this function is a distance function means (1) that it is symmetric in
x
and y, (2) that the distance between x and itself is zero, and otherwise the distance between
x and y must be positive, and (3) that the triangle inequality holds, meaning that the length of one leg of a triangle
xyz
cannot exceed the sum of the lengths of the other two legs:

This last property is ultimately a consequence of the more fundamental Cauchy–Schwarz inequality, which asserts

with equality if and only if x and y are linearly dependent.

Relative to a distance function defined in this way, any inner product space is a
metric space, and sometimes is known as a pre-Hilbert space.[4] Any pre-Hilbert
space that is additionally also a complete space is a Hilbert space. Completeness is expressed using a form of the
Cauchy criterion for sequences in H: a pre-Hilbert space H is complete if every
Cauchy sequence converges with respect to this norm to an element in the space. Completeness can be characterized by the following equivalent condition: if a series of vectors

converges absolutely in the sense that

then the series converges in H, in the sense that the partial sums converge to an element of
H.

As a complete normed space, Hilbert spaces are by definition also Banach spaces. As such they are topological vector spaces, in which topological notions like the openness and closedness of subsets are well-defined. Of special importance is the notion of a closed
linear subspace of a Hilbert space that, with the inner product induced by restriction, is also complete (being a closed set in a complete metric space) and therefore a Hilbert space in its own right.

摘自:https://en.wikipedia.org/wiki/Hilbert_space

Hilbert space的更多相关文章

  1. The space of such functions is known as a reproducing kernel Hilbert space.

    Reproducing kernel Hilbert space Mapping the points to a higher dimensional feature space http://www ...

  2. Cauchy sequence Hilbert space 希尔波特空间的柯西序列

    http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space  with an inner prod ...

  3. Reproducing Kernel Hilbert Space (RKHS)

    目录 概 主要内容 RKHS-wiki 概 这里对RKHS做一个简单的整理, 之前的理解错得有点离谱了. 主要内容 首先要说明的是, RKHS也是指一种Hilbert空间, 只是其有特殊的性质. Hi ...

  4. paper 10:支持向量机系列七:Kernel II —— 核方法的一些理论补充,关于 Reproducing Kernel Hilbert Space 和 Representer Theorem 的简介。

    在之前我们介绍了如何用 Kernel 方法来将线性 SVM 进行推广以使其能够处理非线性的情况,那里用到的方法就是通过一个非线性映射 ϕ(⋅) 将原始数据进行映射,使得原来的非线性问题在映射之后的空间 ...

  5. 希尔伯特空间(Hilbert Space)是什么?

    希尔伯特空间是老希在解决无穷维线性方程组时提出的概念, 原来的线性代数理论都是基于有限维欧几里得空间的, 无法适用, 这迫使老希去思考无穷维欧几里得空间, 也就是无穷序列空间的性质. 大家知道, 在一 ...

  6. 希尔伯特空间(Hilbert Space)

    欧氏空间 → 线性空间 + 内积 ⇒ 内积空间(元素的长度,元素的夹角和正交) 内积空间 + 完备性 ⇒ 希尔伯特空间 0. 欧几里得空间 欧氏空间是一个特别的度量空间,它使得我们能够对其的拓扑性质, ...

  7. Kernel methods on spike train space for neuroscience: a tutorial

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...

  8. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  9. svm机器学习算法中文视频讲解

    这个是李政軒Cheng-Hsuan Li的关于机器学习一些算法的中文视频教程:http://www.powercam.cc/chli. 一.KernelMethod(A Chinese Tutoria ...

随机推荐

  1. ef第一次启动较慢

    解决ef第一次启动较慢的问题: protected void Application_Start() { //禁用第一次ef查询对表__MigrationHistory的问题使用了ef的Code fi ...

  2. Css Study - Top Menu in Header 横向间隔的菜单

    .shortcut ul li { display: inline; } CSS <style> ol, ul { list-style: none; } html, body, ul, ...

  3. JavaScript encodeURI(), decodeURI(), encodeURIComponent(), decodeURIComponent()

    URI:  Uniform Resource Identifier encodeURI() And decodeURI() The encodeURI() function is used to en ...

  4. 34、JS/AJAX

      1)回顾JS中核心内容 2)了解WEB1.0和WEB2.0时代的技术与特点 3)理解AJAX的产生背景.工作原理与特点 4)掌握AJAX常用API及应用   声明:服务端使用Servlet技术 一 ...

  5. 一个平台BUG,好吧,找到了一个新的办法,同样的效果

    问题的来源,我是看到别人这么做,我只是看到了这个程序运行的视频,具体是当你选择通信方式时1  COM ,  2  网口:要求在combobox中选择,selectindex为0时显示COM的选项,为1 ...

  6. 实现一个名为Person的类和它的子类Employee,Employee有两个子类Faculty 和Staff。

    (1)Person类中的属性有:姓名name(String类型),地址address(String类型), 电话号码telphone(String类型)和电子邮件地址email(String类型): ...

  7. js数组去重方法

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. Viking Village维京村落demo中的地面积水效果

    效果如下: 似乎是通过高光贴图实现的,查找后发现具体在这: 它使用了基于Standard的TerrainSurface自定义Shader,关闭该帖图后效果消失: 这个TerrainSurfaceSha ...

  9. js与jquery的用法

    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />后面加上 ...

  10. struts的hello world小试

    struts的hello world小试 前面jdk的安装和配置,tomcat的安装和配置以及java ide的安装和配置就不写了. 在项目中使用流程 创建一个Web项目 导如struts 2.0.1 ...